X-Virus-Scanned: clean according to Sophos on Logan.com Return-Path: Sender: To: lml@lancaironline.net Date: Sun, 18 Jul 2010 08:35:49 -0400 Message-ID: X-Original-Return-Path: Received: from imr-mb02.mx.aol.com ([64.12.207.163] verified) by logan.com (CommuniGate Pro SMTP 5.3.8) with ESMTP id 4397011 for lml@lancaironline.net; Sun, 18 Jul 2010 00:52:52 -0400 Received-SPF: pass receiver=logan.com; client-ip=64.12.207.163; envelope-from=Sky2high@aol.com Received: from imo-ma04.mx.aol.com (imo-ma04.mx.aol.com [64.12.78.139]) by imr-mb02.mx.aol.com (8.14.1/8.14.1) with ESMTP id o6I4q5MR018005 for ; Sun, 18 Jul 2010 00:52:05 -0400 Received: from Sky2high@aol.com by imo-ma04.mx.aol.com (mail_out_v42.9.) id q.e34.dd683d1 (34907) for ; Sun, 18 Jul 2010 00:52:03 -0400 (EDT) Received: from magic-d17.mail.aol.com (magic-d17.mail.aol.com [172.19.155.133]) by cia-da02.mx.aol.com (v129.4) with ESMTP id MAILCIADA024-885b4c428873359; Sun, 18 Jul 2010 00:52:03 -0400 From: Sky2high@aol.com X-Original-Message-ID: <8e609.2871380c.3973e273@aol.com> X-Original-Date: Sun, 18 Jul 2010 00:52:03 EDT Subject: Re: [LML] Re: Any LNC2 tail, CG range X-Original-To: lml@lancaironline.net MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="part1_8e609.2871380c.3973e273_boundary" X-Mailer: AOL 9.5 sub 155 X-AOL-ORIG-IP: 67.175.87.113 X-AOL-IP: 172.19.155.133 X-Spam-Flag:NO X-AOL-SENDER: Sky2high@aol.com --part1_8e609.2871380c.3973e273_boundary Content-Type: multipart/related; boundary="part1_8e609.2871380c.3973e273_rel_boundary" --part1_8e609.2871380c.3973e273_rel_boundary Content-Type: multipart/alternative; boundary="8e609.2871380c_alt_bound" --8e609.2871380c_alt_bound Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Content-Language: en Chris, =20 You got me a little confused but I quickly recovered. All references I= =20 have seen used MAC (Mean Aerodynamic Chord) as the reference for CG. Ind= eed,=20 the diagram you included does exactly that. H bar C is displayed as the= =20 distance from the forward edge of the MAC, further supporting the use of= =20 specifying the CG range as a percent of MAC (MAC%). =20 Sticking strictly to the CG questions I posed and some comments from =20 LMLers concerning the CG, I present the following list: =20 1. The Lancair 235/320/360 POH gives 2 definitions for the CG range:=20 II. Limitations page 10 -- 15% to 29% MAC VI. Weight & Balance page 3 -- 15% to 20% MAC=20 =20 2. The MAC for flaps -7 and flaps 0 are the same because the TE of the= =20 chord doesn't change much (less than .1 inch).=20 =20 3. Measurements on my 320: a. The leading edge of the root chord is at FS15.75 b. The root chord is 48.5" c. The distance from the root chord to the out board leading edge wingtip= =20 is 114.25" d. The taper distance is 3.5" (from tip to line perpendicular to root=20 chord at the leading edge of the root chord). e. The tip chord is 28" where this chord is parallel to the root chord. f. The TE root chord to the tip chord in e is 115.4" but to the actual= TE=20 tip is another 6.25". The wing only up to the tip chord that is parallel= =20 to the root chord was used in prelim calcs. g. Using the calculator at:=20 _http://www.nasascale.org/howtos/cg-calculator.htm_ (http://www.nasascale.= org/howtos/cg-calculator.htm) for 15% results=20 in a MAC of 39.17", 52" from the root and the CG at 7.47" aft at the root= =20 chord. 7.47+ FS15.75 =3D FS23.22 h. For 20% the CG is at 9.43". 9.43 + FS15.75 =3D FS25.18 i. For 29% the CG is at 12.95". 12.95 + FS15.75 =3D FS28.7 =20 4. Since this calculator only considers tapered wings with parallel chords= ,=20 perhaps you have a more sophisticated calculator. If you need other =20 measurements, let me know. The measurements I took were from points plumb= =20 bobbed to the floor with chalk lines used and a proper rectangle construc= ted. =20 5. Assuming that the swept out wing tip changes the forward CG limit a bit= =20 back to the 24.5 (1.28 inches), that will still not explain the narrow CG= =20 from the calculator or logic. The calculations show a range of only 2" an= d=20 that makes sense to me because the published span is only 5% and 2"/.05= =20 equals 40" for the MAC - close enough to 39.17 inches. Using this sort= of=20 logic and the POH where a 15% MAC results in a CG at 24.5 then 24.5-FS15.= 75 =3D=20 8.75/.15 =3D 58" for a MAC longer than the longest wing chord and the spa= n of=20 5.8" - Huh? 5.8/.05=3D116 which would be a really BIG MAC (no pun intend= ed). =20 HELP! =20 Scott Krueger IO320 =20 In other words, I am still suspicious of Lancair's published CG reference= .=20 =20 =20 In a message dated 7/16/2010 4:57:43 A.M. Central Daylight Time, =20 chris_zavatson@yahoo.com writes: Bill, We definitely have too many MACs out there: mean aerodynamic centers vs.= =20 chords. Both start out as integrals which can degenerate to averages for= =20 simple geometry, like Hershey bar wings. The combination of washout and= =20 sweep make the calculation of the mean aerodynamic center a bit more=20 challenging. CG is a mass property and only moves if you burn fuel, move something in= =20 the plane or get up to use the rest room (not in a Lancair of course). = All=20 forces, including moments, about the CG must vanish for steady=20 unaccelerated flight. The neutral point is a parameter important to stab= ility and best=20 be safely behind the CG otherwise you'll have one of those Wright Flyer= =20 experiences. =20 Chris Zavatson N91CZ 360std _www.N91CZ.com_ (http://www.n91cz.com/)=20 =20 =20 ____________________________________ From: Bill Bradburry To: lml@lancaironline.net Sent: Thu, July 15, 2010 4:08:18 PM Subject: [LML] Re: Small tail, MK II tail, CG range Unless we are talking about MAC and cheese, or the Mickey D kind of MAC,= =20 the aircraft MAC is the Mean Aerodynamic Chord. This MAC is the width of= =20 the wing when measured through the center of the wing in the forward-aft= =20 direction. On a plane like a Piper, this is just the width of the wing.= With=20 a more complicated wing design like the Lancair it is the average of this= =20 measurement. That is where the word =E2=80=9CMean=E2=80=9D comes from. = This measurement=20 has nothing to do with the =E2=80=9Cneutral point=E2=80=9D. It really jus= t describes how=20 effectively wide the wing is. The CG (Center of Gravity) is the point=20 around which the airplane balances (or would balance) if it is sitting on= its=20 wheels. (Maybe that is a =E2=80=9Cneutral point=E2=80=9D?) This CG is= calculated when the=20 plane is motionless on the ground and on scales. It is not the CG that= =20 the plane is operating with when it is in flight because the horizontal= =20 stabilizer is usually designed to place a down force on the plane, which= will=20 have the effect of moving the CG backward in cruise. That is why the CG= is=20 specified to be in the front 25% of the wing width (MAC) in the specs.=20 When we determine thru the Weight and Balance calculations, the CG, we=20 have no idea what the CG of the plane will be in flight because as the an= gle=20 of attack moves the Center of Lift forward and aft, and the horizontal=20 stabilizer adds and removes loads, we have no way of calculating or knowi= ng how=20 these forces are moving. Hopefully the aircraft designer did all this wh= en=20 he specified the CG range that we should keep the plane in when it is on= =20 the ground and on its wheels. I suggest we stay inside these =20 recommendations.=20 Bill B=20 --8e609.2871380c_alt_bound Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Content-Language: en <= FONT id=3Drole_document color=3D#000000 size=3D2 face=3DArial>
Chris,
 
You got me a little confused but I quickly recovered.  All refer= ences=20 I have seen used MAC (Mean Aerodynamic Chord) as the reference for CG.&nbs= p;=20 Indeed, the diagram you included does exactly that.  H bar C is displ= ayed=20 as the distance from the forward edge of the MAC, further supporting the= use of=20 specifying the CG range as a percent of MAC (MAC%).
 
Sticking strictly to the CG questions I posed and some comments= from=20 LMLers concerning the CG, I present the following list:
 
1.  The Lancair 235/320/360 POH gives 2 definitions for the= CG=20 range: 
II. Limitations page 10 -- 15% to 29% MAC
VI. Weight & Balance page 3 -- 15% to 20% MAC 
 
2.  The MAC for flaps -7 and flaps 0 are the same because the TE= of=20 the chord doesn't change much (less than .1 inch).
 
3. Measurements on my 320:
a. The leading edge of the root chord is at FS15.75
b. The root chord is 48.5"
c. The distance from the root chord to the out board leading edg= e=20 wingtip is 114.25"
d. The taper distance is 3.5" (from tip to line perpendicul= ar to=20 root chord at the leading edge of the root chord).
e. The tip chord  is 28" where this chord is parallel to the roo= t=20 chord.
f.  The TE root chord to the tip chord in e is 115.4" but to the= =20 actual TE tip is another 6.25".  The wing only up to the tip chord th= at is=20 parallel to the root chord was used in prelim calcs.
g. Using the calculator at: http://www.nasascale.org/howtos/cg-calculator.= htm =20  for 15% results in a MAC of 39.17", 52" from the root and the= CG at=20 7.47" aft at the root chord.  7.47+ FS15.75 =3D FS23.22
h. For 20% the CG is at 9.43".  9.43 + FS15.75 =3D FS25.18<= /DIV>
i.  For 29% the CG is at 12.95". 12.95 + FS15.75 =3D FS28.7
 
4. Since this calculator only considers tapered wings with parallel= chords,=20 perhaps you have a more sophisticated calculator.  If you need other= =20 measurements, let me know.  The measurements I took were from points= plumb=20 bobbed to the floor with chalk lines used and a proper rectangle=20 constructed.
 
5. Assuming that the swept out wing tip changes the forward CG limit= a bit=20 back to the 24.5 (1.28 inches), that will still not explain the narrow CG= from=20 the calculator or logic. The calculations show a range of only 2" and= that=20 makes sense to me because the published span is only 5% and 2"/.= 05=20 equals 40" for the MAC - close enough to 39.17 inches.  Using th= is=20 sort of logic and the POH where a 15% MAC results in a CG at 24.5 the= n=20 24.5-FS15.75 =3D 8.75/.15 =3D 58" for a MAC longer than the longest wing= chord and=20 the span of 5.8" - Huh?  5.8/.05=3D116 which would be a really B= IG MAC=20 (no pun intended).
 
HELP!
 
Scott Krueger
IO320
 
In other words, I am still suspicious of Lancair's published CG=20 reference. 
 
In a message dated 7/16/2010 4:57:43 A.M. Central Daylight Time,=20 chris_zavatson@yahoo.com writes:


Bill,
We definitely have too many MACs out there: = ; mean=20 aerodynamic centers vs. chords.  Both start out as integrals which= can=20 degenerate to averages for simple geometry, like Hershey bar wings. = ; The=20 combination of washout and sweep make the calculation of the mean aerody= namic=20 center a bit more challenging.
CG is a mass property and only moves if you= burn=20 fuel, move something in the plane or get up to use the rest room (not in= a=20 Lancair of course).  All forces, including moments, about the CG mu= st=20 vanish for steady unaccelerated flight.  The neutral point is a par= ameter=20 important to stability and best be safely behind the CG otherwise= you'll=20 have one of those Wright Flyer experiences.
 
Chris Zavatson
N91CZ
360std


 


From: Bill=20 Bradburry <bbradburry@bellsouth.net>
To: lml@lancaironline.net
Sent: Thu, July 15, 2010 4:08:18=20 PM
Subject: [LML] Re:= Small=20 tail, MK II tail, CG range

Unless we are talking=20 about MAC and cheese, or the Mickey D kind of MAC, the aircraft MAC is= the=20 Mean Aerodynamic Chord.  This MAC is the width of the wing when mea= sured=20 through the center of the wing in the forward-aft direction.  On a= plane=20 like a Piper, this is just the width of the wing.  With a more=20 complicated wing design like the Lancair it is the average of this=20 measurement.  That is where the word =E2=80=9CMean=E2=80=9D comes= from.  This=20 measurement has nothing to do with the =E2=80=9Cneutral point=E2=80=9D.&= nbsp; It really just=20 describes how effectively wide the wing is.  The CG (Center of Grav= ity)=20 is the point around which the airplane balances (or would balance) if it= is=20 sitting on its wheels.  (Maybe that is a =E2=80=9Cneutral point=E2= =80=9D?)  This CG=20 is calculated when the plane is motionless on the ground and on scales.&= nbsp;=20 It is not the CG that the plane is operating with when it is in flight= because=20 the horizontal stabilizer is usually designed to place a down force on= the=20 plane, which will have the effect of moving the CG backward in cruise.&n= bsp;=20 That is why the CG is specified to be in the front 25% of the wing width= (MAC)=20 in the specs.

 

When we deter= mine=20 thru the Weight and Balance calculations, the CG, we have no idea what= the CG=20 of the plane will be in flight because as the angle of attack moves the= Center=20 of Lift forward and aft, and the horizontal stabilizer adds and removes= loads,=20 we have no way of calculating or knowing how these forces are moving.&nb= sp;=20 Hopefully the aircraft designer did all this when he specified the CG ra= nge=20 that we should keep the plane in when it is on the ground and on its=20 wheels.  I suggest we stay inside these=20 recommendations.

 

Bill=20 B

 

 

 




--8e609.2871380c_alt_bound-- --part1_8e609.2871380c.3973e273_rel_boundary Content-ID: Content-Type: image/jpeg; name="image001.jpg" Content-Disposition: inline Content-Transfer-Encoding: base64 /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0VFhEYIx8lJCIf IiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/wAALCAHUAvkBAREA/8QAHwAAAQUBAQEB AQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1Fh ByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZ WmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG x8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/APVNzY5pA5JAppJEuKch 5NODdaevIoLbaUN2oLfNin55prMNwweopQ4Xqwp4PGc0ZwM0u788UE9PTFOB4zSg0oNLnpmgNnml pOhxSg5oppYCndaQnApQecUtFFFFFFJS0UUUUUUUUUUUUUUUUUUUUUUUUlAGKWiikoxzmg9KB0oN LRSUUnPpSig0UGlptL3o7mgZ70GlpM0tFIDkmg9qKWis0Z2g0Ebvb3ppGWLAHFCHGeOtGfl+tSg4 UUjdQT0FLkcY9aM/vAMdvWpAaa2M570Abjk4p38BxzSn7opxA25FKB0oHQj2p2MJx1pSvANNyMAk 96VMBevFKp3HjpSt0zSZOKUk8UmMHmlAO6nUgHJoDZGaUUUhJFLRSZ5Ioyc9OKdSUtFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFJS0UgGDn1oIopaKoHnBpaTqKZwO1A9hTsHinYH elVQO1KqjcMil6igqCRmlwMcUoUcilCjilIB5pSvPBIpdvHWl28gUp6UmOAOKXbgYH40DOfbGMUp FIMnrSntikwc0o60tFJj8vSlFB6UhPFLSdWo/iNLRnnFAoA5oPFFLRRRSZoooxxRRRigUUtIaTki gdaAaWge9LSE8igHNLSZozRmjPOKCQBmgHIpaSlpKKKKM0ZpaKSlpM0UtFFFFFFFFZ2eOtLnJIFI R3NAAxkUoHFOHuKUYxTjgEUi9RSjpS/zpQeM+vSl4HenZxQAMUc5zTx05pM0Z4oA96d2o7UdqXFG KMUY5paKSlpDRjNFFGKKMc5paKSilopKWkxzRRnFZk3iC1h1tNHaK4N1IAy7Y8qV/vZ7AdK0wc80 UtJjFFLSHNHOKbgkkmlGcc0tBoo70i9KdSGmvnIA9c07pSDkZoP3TSjoKWk70UUCg0dKTjFLRRmi jNNIyfagBsYzThSDoaWlooooorLxgetSjgDjtSNyCKbyI8ikPCjBPJp3JIPPBpd2FP6UAnpmlGVI 5p24k4FGcjHWlDHrilyQmSKeKNwGOKXP5ml3Hdj0604MCppARjPtQTmnbgKXcOtN3A5Hp1p46Cil pCcUZooo60Yo6Um7n60uaKWiiiiiiikpaKKY7Y4xXH6NcwXXi7XdXllURW+20jZnG0BRliPyH510 9vqFtPFDIkybZ1DR5O0sD0ODzUyXMTuUWRGYAHAYHAPepqKKKKKSilooopMUtJijFFGMUYpaTFGO aKWkxRijFJtz3pfajHNGKKKDmkAxS4oxRS0UUUUVnbMnqadikKZ70m3AxnpRtJwR60YOT6Uuw7QO 9KRk9OaBy1OC7cnGc+lGDjPWheR05FOPIxUlIxAHPpSA5YEnPFOHUnjrQCQD0707AKYobtx3pRjH uKD93AOPpSIuEHvT/QUvelpD1xSY5oxzRjGaTn8adQwyKMDj2o7ilooopO9LRRSd6KWiimPGsilX GVYYI9RWY/hfQnTy20q2KHquzg1ia/ptyniO1vLHR/tQit5AsgIykm3agOTwoBJ49aseFNLe1WO7 msXsnWzjtVjdgWYDkscdOScV1FLRRRRRRSUUUgOadRRSUtFFFFFFFICCcUtFFJS0UUUlLRRRRRRR RRWfkZIzQM07HekwByad6UppO9BHI9TRtHYUA4NP4IpThQTyQOwoPWlJ9KTBJ6U4Ic84Ap2BgUbR zxS7aXHSlwKCoIoxwBS4o70tJRigZpaQClopDRS0UUUUUUUUmOaWiimOcd8VzOj+JZp/E+paLeup aOVjasAAWQdVPuOtdNgcHAyaXaPSlzR2pCelLRzRR3paaeKXvRSdsk9qVeVFLSE0AYNHeijnFHai j8aKM80UtFFJ3paKKSgGge9AOaWiiikNFLRWY3DDipAeDSBs0Mcr7daUMOAKXcM0BgR9KTJDZJzm nbsc0nUCnDJHNKOQT+lA3biAR608Yx+FL0xk9RTgwzj8aAeRTjjIpRQfpSiilooooooooooooooo oooooooooopp615Rrtndf8JldXdrN9nP29II5z0SVk3Ln27H616JoOoXGpaYk13aSWtyjGOaORcf MOCR7HtWpRS0hGaMZNFAGKBRQRRS0hHpRS0hGTSYOc0tFFFLSHjmk79KU9aBQaTtS0tFFFJQKWik paKQ00/eFOFLTcis8nnmlHJoHINIMFfrT8Ywab6H1p6pgfWhhjH1pNuXwRwKfjD/AFoYccetNHyn jtThgyNTgfmIzQCWAzwacSSQMYJ70DIwP1pyn1NSHpxQOBQppc80UUtFITiiiloooopM0UUtFFFF FFFJSKCCcnNOprDNc/4g8Pw3ej6mlpH5dzc4n3jOTKnKn9BWhoOpjV9Ds7/oZogXH91uhH55rSop KM0Ag9KWkpaKKKKKKKKKKKKKKKKKKSlooooopDRRS0lLRSEZIpNvIpaWm7apgDvSAcYpQoGaNoBy KXHGPSl2jAHpSj0oZdxHJ60m3360oXB59aVhuFNC8ZJyaACCSO9LggE9ST6UckDJBx+lPzlsg9Kc PvZxSqCB0px6cUv4UAcUuKMUY5oApaQ0UUZopaTNBNGKDwKRR3paQZ706koFLRSYOaMc5opaSmtn PFc14W/0DU9Y0RjhYLnz4B/0zk5wPof51046UUn8XtSg5pBwKXNB7UZxS0UUUUUlGaKKWkopaKKK KKSlooooooooooooooooqiOlGfXtS+1LjijvSnqKQcU6igDml7mkPA4pQRg8UjEkZ7mlAA6CpOM9 6UU6l7UUtFFFFFJS0UmOc0UtJijHNBGaKKWiiiiiiiikpaQ0hFcxrBGl+MdL1I4WG8VrGY+/3k/X P6V1APHSiikHel6CgcijHNGKWiikpaKT3pMHml7UhpRRRS0lLRRRSd6B0paKKKKKKTNFLSUtFFFF UaKBnGacOlGOc0d6B96nDrRil96B3oIyDQR1x1pQPWlA5pw60ZANLnNOzS0UZoByM0UtFFFFFFFF FFFFFFFFFFFFFFFFFYXi/Tm1Hw7cpCP9IhAnhPo6HcP5Ve0bUU1XR7S/TpPEGI9D3H4HNX6KKSlo oooopKWikoxRjjFBGaKWiikxS0UUUmKKWiiiikpaTvSNkjijOKWlooooqiKWilo5o9KdjmjvS0po 7UnXj1pT1z2oFOGaXpyaaSM80oBp2cY+uKd2pCcZox8pHel/hFAycGl5zRQKWkNFFFB6UUZ5ozS0 UUlFLRRRRRRRRTSoPXmua8KY0+71TQSeLS4MsI/6ZSfMPyJNdNS0UUUUlLSGiloooooooooooooo oooooooopKWikoopaKKKKoZ6U71oopc84oPanCjjGaKXtS9vwoHY0uMg5pBxSilIzj0oxxTgvY0K v407Hy4BxSMMjFLkEcGgjj8aWjvRQKWkopaSg9KO9FJn25p1J3paQ9KB0paKSkLYGegpRS0UUmec UVy+sEaV4v0nU+Fivc2U59SfmQn8cj8a6c5paKD0oozmgcDrmloopKM0ZpaKTNJu9qdRRRSGiloo ooooooopO9LRRRRRRRRRWfxx2o3fNgGn96WkzhqXI706jNKDkUpo/wAKMinLzTckD8aVeDS9gKd2 +vNL6Uo64pRS0mMdKWiiiiiiiiiiiimk4PXp1pqSK43I4YHuDmgOGB2sD9DT6WkpaKKQgHqM0UtF JRS1heLrF7/w5dCE7Z4ALiFsdGQ7h/Kr+kX6appdrfx9LiJXx6Ejkfgc1doo7UdqBwKWiiiikpOh 6UtBo6ik7UtB60UUhGRS0d6Wik70ClopBS0UUUlLSUA84zzS0hpaKKzO4FPH3zxT+1HUUg5IoPDU oJ2nntmkbIUkE5pV3DHOal6UHpUSE+aR2708OcdOO1IXPYCnA9jijdxkAnmnBuKdu4HvTg3ODS55 pN6gkE9KcCCMilooooooopKKWiiq1+23T7hh1WJz/wCOmuE8MXZ8PaLewbDh7OG9tkPVnkXaQP8A gYH51Pot1H4U0rWZHUyvFepEQXwGlZEzz2GSTn0rTsvFU102oW/2WC4urNFkUWlwGjkU8feOMEHr Tf8AhMVhtNSkubWNpNPgWdhbXAlV1JxgNgc8VetNdml1WCxvdNktDdRNJA5lD7guCQcdDzW6OlLR RRRRRRRTWAIIIyCOlc14QP2J9S0Jzzp9yWiH/TKT5l/ma6alopKMj1opaKKSgDFLSZHrRketLRRR RRSUZHrRxnNGaKWiiiikHSjmiloopr8IT6VT0rUItVsY76BXWOXJUOOeDirvOaBS0UVn4zinBcEm lGaMU0cNzxzTgpyTnOaAp2n3pQrFAvelwc0/tQ2cHjNRop+ZvWs6HV0OpajYzQmL7DEkxfdkOjAn p2xgiqdr4rtZvDD661vLHFHJ5fkkguW3AD88iteC5Nxd3EH2W4hEBC75EwsuRnKnuBU6ElCT+tOU 4HHpTt3I56Dn2pS449utKGG7rSgryPU0qMMde9Ooo7fWjGBQOlBo70UUelBHNFLVe+tzdWc9uHKe bGybx/DkYzWEfCSmTRW+1N/xK4xG/wAv+vAwVB+jDNJceFmuLTUYTeYkvL4Xkb+XkREbdoI7j5ef rUVz4X1C8027t57y0WSd42SOG22QgIc7WHUhj15qs3hHU5rXVleaxhkv7eOKOO3jKRxbTn8RW3Pp M82v6ZqCugjsoZY3U5ySwAGPbitgDAooyKKWiiikoFFcrqZOleONM1HpFqKGym5/iHzIf5j8a6rP OKWkJwKwvEHiI6FdWEZhWYXcwiI37WUHjd6EDIo1TX47DWbLSooBcXd23ID7RGg/iJwfyrcBGAM0 tLRSUUjEfjXMwavq17rup6daJZtFZbcTOrfM7fwHB/WtHQdZTWbJ5jGYZYZWhmiJzsdTggHuPSta looopkkscW3zHVd7BVycZPoKWuZg1fVtZmuZdHgs1s7aVolluWYtM69cAdFz3Na2l3dxqGnRT3No 9pOcrJA3Yjg4Pcdwaz31bVNQv7m30a1tmjs38qW4unYK8mMlVC9cZ5J71o6Ne3d9as99ZNZ3Echj eMnIOP4lPcGtClooooooooopkp2wufRTWP4OI/4RPTiO8W78ya26KKKKoCnetFKDSbQTml/ipwFK M560Yp3U0mfrRnpjOK4zxa0ttr8UcXytrFn9iyOpbzBz+Cs1Qz20a+Lz4fjQi3kvIb8jsESPkY9N yin6pe3K2Xit47qSNoruGONgx/d5CdPTrVx47jQvEtpBDeXVzHdWszzx3EpkDMi5DDPQk1U065v3 Tw5fNq9zJJqkxe5gLAoV2scAfwhcAe9dB4imFlpZum1GexEJ6wIrNKTwEAIOST0xWLJqWvaRoViN QmJ1DUbsID5IkeBCCcbV+8wA/X2pkviPWrfTLlxGzyR30MNtPcWxh85HPOVPTHIyPrWlPf6zb3tr owmtJNQu1eZp/KKxwxLgYC5yxycdRVvQtUu7m5v9Pv0iF1YSKrPCCEkVhlSAenuK3BRiiiijFLSE H1ooNUtQ1ix0sR/a5SrSttjRVLM574A5qGTxHpMNnDeNdq0VycQ7FLM5HUBRzx39KcPEOkfY4rw3 8IgmJVHLYBIBJHsRg8Uk/iPR7e0hupr+JIZ13RMT98dyB1x71O2p2S2IvWu4ltWAKzbxtIPTBrNt vEFvNq13EZofscEMUiXAbglyRyenataS6ggeNZZVRpm2RhjjeeuB68VGNV08zJEL2DzJM7E8wZb6 CpXvLaJ0jlnjR3+6rOAW+gpXuoEOHlRTnHzMBz6UvnwmUxCRDIoyyBhuA+lVrK5uJ5LlZ7X7OIpS kbeYH8xf73HT6GrSyI2SCD9DT80tFJ3ooAxRWF4wsHvfDlyYVJuLbFzCR1Docj+taOlX6anplrfR /dniD8djjkfgc1cJAHNRuVCknOBya4XxAs+saO2qWtvM08l9FHbxshVgiNgZB5AJJJNSvCU8eaZG 0od4YpprqXYdvmMp4z7DGB6CtSz8TT3E9jLJYrFYai7R20wl3OSMldy44DAHHWuk3AAe9G4Gloo6 mq17cm0tZZliklZFyscSFmY9uBXI+G7i70nRZmfSb6bVruV5pIvIZVDk8AscAAfWrOkG38G6aF1a dmvb+dppRDG0gDMQMcDoCQM+prbh8Q6XcX6WUVzuneR4goQ/eQZYZxjp+daeaBS01mxWB4kOb7QQ T11FTj/gDVulgMiuM0PVYvC1pcaPq0NxG8M7tA8cLOs6McgggdeeRW5Y63IYNPXUrKS1ur5mCwqC 2zGWG49uKxLK8t9AfU9I1eSezWe6kmgulVtrrIc8MBww5HNWfDusJZaNqF9fXd3cWkd6UgmmVndk OAvQZIyfSusUhgCOhpaKSlooooopKp3l9boZLNpMTtbvKE7lRwT+ZFZPg++thoOlWAkP2hrITBMf wZxk/ia6KlooorOBw2DSlhn6UBsinZ4zRkdDSg9QO1PHFL6Um8AjmndKQDDE569qdjGBULLbyyKX SJ5IiGG4AmPPf1FNEFuZhdCKMzBNomAGdvpn04qN9MsJo50e1ieO4cPKMcSMMYY+vQflT5rG3lu4 7x4lNzCjJFKeqBuo+nFc9YeGZ49Ys7qe10+3+yyO7y2xbM7EEDCkYQc5OM1sapoVprMlu109wj2r l4mhlKFWPfj9Kjk8NW09gtrJd3jvHMJ4rh5i0sTjupP8vek/4RaB7JbeW9u5m+1rdtNI+52ZSCB6 AcdBUuraE1/eW+oW141nfWqsiSqoZWVuqsp6jgflT9H0YaWbiWS4a6vLxxJcTsoXeQMDAHQAdq1R 0paKKKKKKKRunFcz4kOoLqNl5SXhsgjmV7CMNNv42rk/dU8/pXP2ul6lbQaRezQalEIluElW1UNN EzOSDjuCODirlvorH+xEewuvJk1Ca4lS6w7DKkhnxwMnnB9avzyLo3i66vry1mktbi1jitpIojII ypO5MDpuzn0OKx7SxuNPg0i+1C1lTT4r6eZoDHuMAfPlsyjpg8+2av6fbWWuaz4iRICtpeQQxhmi KiQ4bLgY9cc+1L4Za71vU4bjUEIOiQm1IPR7g8M4/wCAgf8AfRrMi02BPh29wtkqXJvC+/yvnB8/ APr0H5VD4rvIJpdbjKWlvdRlIwrws1xcYCkMrZ+Veew+taz6dYahq/iSa9t0mMNtCFZ+dv7okn2P FV9PsrW0XwfdwR7Lm6b97Nkl5AYSx3E8nn1pl/Mfsl8jztFaya+I7twxH7ogZBI6KeMmuh0GHR7b UNRh0i6LoChlt0bdFExH8J9SOvNadtqttc31xZJuW4tseZG42nB6MPUe/rV0HNLSUtFJikYAggjI rmPCDGwOp6JIxxp1yfLLH/lk43L+WTWvLr+kQyeXJqdoj/3WmX/Gqt/ry2ckdxH5dzpuP301u294 T2Ygfw+p7VqxypPEk0TrLG67ldDkEeuac0fmIVJ4IwQDXN2PhvULeXT7e5urd9P0uRpLcIpEkhII Xd2G0Ht1pdS1+/stRvY1htWgtbRpgrMfMJ6ID2AZug68Vo6Tf3l3fX0V1BHGtu0aoyMTklAzA+4J /WtaijFNKjPNNAznB5/lWNr9jcXgspbW9gtmtrlZSJx8kmOgPI6HkVFoOg3tpKs2p3UFw0MkjwmJ CNzOeXbPfHGB2rosc5o6VDcXlraANc3EUAY4BkcLn86xtd16K3s0TTrm2kvLmVYYSZVKoT/GcHoA Ca5HxppFjp+l2k0V1JeXrz/vbmSYs5+UknrhRn0q14C8R3NxePo99O0oCb7d2b5hjqpPfrx9DXoC +gYfQGjZ9ffFG3PB5HuKAnGD0+lKGwOaXdxnFG72paMgUE4o3UZopP4qUkVzHjQvZWltrEab2s5C rrnG6ORdhH5kH8KpfDaykXSH1CclpJAtvESMbYo+APzya7PsaVelLRRWYvJHenA9eKQHg5xThymK M7QWNSIO/c0p604ngmo9owW9uKkTlRnvSLw5J9KfkYANcuvlDX/FM8se9FtYQ65xuARiRWbqrSze DtEt7Kyijs7t4EMBmYHk5CZx909zmtCLUNVtPEVro8GmwR2qWm8xRzg7V3Ab8kZ46be9bGq6nDo9 j9pnEkm51jjjjXLSMxwAKyl1O7m8VrbzRXVksenSSSW5YHncAHBGQT1p9p4i0/S9B0u4uLq9ulvV KxSyx7pXPJ+YDv2q1J4psbeNDLFd+Y0PnPCtuzPEmcbnA+6KlufFej2Xlebd7vNiEy+VGz4jPRzg fKvuai1Dxfplhd2ULyGRbwbhIgyqKQSGJ7g+1Wra8mfVb9HvLWS2hRCsSAiSLIzlz0weoqex1zTd RlaKzvoJ5FGSkbgkD1x6VINWsDIsQvrbzHJCp5q5JHXjNWg2aXNFBpaTNANBGRTSoxijYB3NG0Hq eKTA6g81VvtQttMhWe6kMcZdYwQufmY4HT3NWcHOCTiqumaZa6Vam2tQwUyNIxdtxZmOSSatkA8H pVa7lsrJFmu2ijDMIw7gcljgLn3NTrCnzYUfP9/j731pfs8R2/Ip2fd4Hy/T0pGtYHR0aJGST76l Rhvr60y3sLWzj8u1gjgTOdsahQT9BWZrulTzNDqemlU1Kzz5eeFmTvG3sf0NW9F1aDWbIXMIKMrF JYX+9E46qw9RWjRRRTN/PT6Vh3OuXN7cyWWgQxXEkRxNdSk+RCfTI5ZvYdO5rnrvQktfF1hNrFw2 pR6kGhlZxsUSgZUbR/DjPHPJrr49D0mJQsemWigDAAgX/CuZvfBF3cTySQLpMe8nDR27xNjtkq3P 5VBo2h+LvDMqRWxtbyyLLvh83aFGeSuRwe+Bwa7xRx1o2g1k6h4W0fVLprm8td8rx+WzByu4DpnB 5x2q7Y6dbafbpb2sYjiToMkn6knqferVGaY0qopZyEUd2OBWJceM9GimaC3me/uF4MVnGZTn0yOB +dch4ihkeN79tFGmPdP8pmu2M0z9gsanrVvQ/h6Z0WfX5JME5W1Emf8Avo5/QV38UKQoqRjaqgKB 7DpUlJ1qC4srW7ULdW0U6joJEDY/OuX8W+EbS70ljpdjBFdxMHCxoFMo7rx/nNcDoMOnLr1vDqgS O2Vm89LgbQODwwPvXbad4f0XWtYN5baWkWlQRlI8oUFzITy4HXavQHuTWyfBHh9n3iyZD/sTuP60 g8E6IM7Uulz/AHbuQf8As1KfB2mbdqz6gg/2b2T/ABpF8H2qHMep6sh9r16Q+FJM/L4j1tfb7SD/ ADFA8MXasSnifVx7M6MP1WnHQdWH+r8UXoz/AH4Ym/8AZaX+x9eU/J4ncj/bs4zSjS/EQ/5mND9b FP8AGlNj4kC4XW7Un1Nj/wDZ0v2bxMvH9p6e31tGH8npnleLUJ/0rSJPTdDIv/s1Jnxf0xopP/bU Uol8Wr1tNIb6TyD/ANlpDd+KV66Vpz/7t2w/mtUtZTxLq2kXGnnRbRPPTaZPtm7afXG2naQ3iDSd LtbBfD8TrBHs3C9X5vfpVz+1/ECjnwySfa9jq/pt7fXYf7ZpjWJUgKGlV93/AHzV4cilorOCndz0 p3HIoIGOgpw4WlIB4IpRQRuB60oHGfSk8sdc08qMg800x4bIJwetK2dpx1rJOilpNYlS4w+poqcr xHhNv49ajfw87aVo1iLhc6bNDIzFf9Zs6j2zmnXOmX48Tw6rayQGE2/2eZJS28Ddu3IR3+tO1/S5 9StYHtHjW5s7lLmESZ2sy54P1BNU47LV7rXJNTvbW3gQ6e9vEkc28hi2eTgf4CoLDQr+CLwvHNCu NNR/tJDghG2YGPXr1qHWtLvI9evL1bK/vIry2RUFlceWQ65G1+R8p9ee9MsLO78Nz3anRJ7uC5s4 kjjtz5oRlXaYmJ7c9at6ms9nJ4du30+SOC0LedDbR+Z5DMmAMDsCcZFU9U06/uz4tS1t5d84gWLA I81QoJAPfjIqdZrbVvEWhtpFm8Ystz3Dm3MQijK4EZyOTntWfLpsSfD++uHsQLt713DGL95nz+Dn GelegggYGTn19acAcCl70UtIM5NHSgHNB9qOcUg6VgeKbu5h/s6ztbhrb7deLBJOn3kXBJAPYmsf XbS7h0qWxbVvtgOoW3kmTDTQZYcN688irUl/faBrF9A95PqFtHpjXgWbBcOGxgEAcH0qF73WdLsd L1ifUjdi9ljS4tiiiMCTp5eBkY9yc1YtNQ1i4vdVupL5FsdLupF8lYRvmVUztLHoBkcjnrWbqUmq 3vh/SdRvL1JY7u8tpGgWIKsYZwVCnqccZyea74dTRRRTWXgiud1mzutK1L/hIdLQuMBb+1X/AJbR j+Mf7aj8xxW3aX0N9aRXVtMkkMyho3HRgasAkilpCSO1c/qtxPqmo/2FZSvF8m+9uEODDGeiA/3m /QA1r2VjbWNtHbWkKQwxjaqIMAVk+MrF7nw7LPbj/SLF1u4e/wAyHP8ALNaum3ialp9veRH5J41c DPTI6VawM0uKMYpaaSahuby3sovNup4oE/vSOFH61iP4zspnMWk211q0g/59Yvk/77OBTQ3i7Uhz 9i0aI9P+W8oH6LSp4NsJ5RPql1d6rIOn2mU7PwQYH5ity2tLWxiEVrbxwIOAsSBR+lK9rbyzRzyQ o8sWfLdlyUz1we1S7F9OlLmgUUUhRW69xiuf1q0t5vFGh74Iny0xYsgOcJxmt/YuRx0p1LRRRRSY oxRRgUYFGKMUYowKQ5xxVG+vrm0ZRDps93uznyig2/XcRUlhdS3kTPPYy2jK2NkpUk+/yk8VaCgd KWlorOzg/WnClzRuA75oD5p46U4UopQKPSg9OTWPLfeIElcR6HbyxhiFb7aASOxwRxTDqfiBACfD IbnnZeocUg1zV0zv8K3oA7pPG39ab/wkl4Dtfwrq4HssZH/oVI3ikRgb9B1hPb7NnH5GlTxfYcb7 HVEz/esX4/IUv/CY6MCQ/wBrQjrus5B/Snr4y8P4+a8dAePngcf0pw8YeHAOdXgB/wBvK/0qRPFn h4gEaxZgHoTJj+dWE8QaLLwmrWJPX/Xr/jUo1fS3GP7RtG/7bqf60/8AtDT3HF5bN9JVP9aeLy1b lbmFvpIKes0bHCyIfo2akooopaSijFFVNR02z1S2a2vIRLGSGAyQVYdCCOQaoxeGdKgt2gS2Yq8y zyM0jM7yL0JYnJ6CrcmnWkt+b6SLdM0Bt2JJwYyclcdOtZ1p4S06yuYZVe5ljtm3W0EsxeOA+qr/ AJxWha6ZbWRuzGGYXszSyq5yCWABx7YFZaeELILBCbq9e2tpllggaX5IiDkADHI9iTjtXQx8jOc5 p1FB6VSt9Ss7q9uLOC6SS4tiBNGp5jz0zVmZvLiL7S20ZAHU+1eX6zfR20Lz6Q/+iG6S4a1cGOSy nByRtP8AC4zx0zXpen3kWoWMN5C2Y50Dr+NWar390lhYz3kpwkEbSN9AM1l+GLSSLSRdXa4vL9vt Nx9W6L+C4H4VuACmuA0ZDDIIwa5vwcTZJqGhsfm066ZYgf8Ank3zL/MiulJzwDSDIAGc1Tv9Z0/S 1L319b2yqMnzJAD+XWsn/hLZL1guiaTeahk8SsnkxfXc3UfQUhsfFGp5N7qcGlRH/llZJvk/Fz0/ AVLaeDdGhlEtzFJqE45Mt7IZTn1APA/AVupHHHHsjRUUdFUYAp2BRgUtHpR3xRQKDSClFZ93YfaN Wsb3zNotPM+TH3ty4/StAdBQaQZ5yc0vNHOaWikpaSjmjNFIM5OTx6U6kJwCa4XW7ySLWJTL4ing 8h98yW0gwkJxhNh6yE9x0HJ7VbuNQl1nUNVtF1WTTLHTVSLzomCu0rdyT2HTHfNdRao8UEccspld FCmRhgsR3NT0tFFZhHc07d0zQSce1Ki/Lnil6EVIo/nS5H5UBiKUOOlG/OCOe1IWycY5pQ36UFum OKFI5GPelEi5AB680eYdx5PFJvYYO/r2qRXzkZpeCBkA/hSGKFj80SH6qKY1payfK1tCwHYxg1E2 k6a3Ladan/tiv+FRN4f0Zs7tJszn/pgv+FMPhjQW66PZ/wDflajbwp4eI50a0/CIUw+D/DpIP9kw Kf8AZyP5U1/BmgORnTyMdNszj+tMPgvQ8/LDcJ/u3co/9mp48I6aoIjm1CPt8t7L/jQPCluv3dT1 ZfcXz02fw/HbwSTNrmsKkaFm/wBLJwAPcVh+D4brxBpDXU+vaokqzMhWOcYAABGcg+tdAfD90Pue ItVX6tGf/ZKQ6LqgJ2eJL4A+sURx/wCO0h0fXQfk8TzY/wBqziNH9leIMYXxLxn+KxQn+f8ASnmx 8RYwNbtT9bHH/s9MNr4pU/Jqunt/v2jD+TUhh8V9rvST/wBsJB/WgJ4uX/lpo7f8BkFLu8Wrg+Tp D884kkH9KDdeKx/zDNMb2F04/wDZaYdQ8WKf+QDZN9L7/FaX+0/Ew5Ph2Fv92+X+oqax1HWZ7tYr zQzaxkEmUXKuF9sCuRt7zVrTxprkujWC3paULMjHbtwODn861hr/AIxH3/C6Nz0EuOPrWP4gj1vX YlNx4QaO5xgXMUoLDHY8cj61L4f1PxJ4fsPsUvh66uYFYmIjgoPT6VqJ421Af6zwtqIPoOayvEfi +XUdHn09tEv7YXBVGeVcDG4ZH1I4rTX4hwRoFbQdVQKMcwUg+Jem7ctp2oLjt5NQXvxMsVtZfstp ci52kRCVMIW7ZPpWVFqfghwZr26v7m/c5kuyHSTd6jBwoHYVIvxFnsLdrOIJqDxuVhu5m2GROxZe 7DofXFLH4mg1RgdU8XPbxng29hAYvzc5Naml3vgCyYSW1xamfr5txueQ/i2TW0njHw4cKur249Bk gfyqVfFOgtwNWtc/7+KlTxBo7kAaraf9/VH9amXV9MJ41C0OfSdf8aeuo2L/AHb23P0lX/Gplmib lZUI9mFPznpS0UUUlJilrC1GRv8AhMdHhDkK0NwxXPBwFHT8a3R0oo70tJQOpoopaSlpD9abHIki 7o3Vx6qcinUUHoazpND0qWdZ3061aVH8wO0QJDeufWhtD0yTUv7Reyha64/eleeOh+vvWgPSlFLR RWbg556ZpSpzxRtJ5PQ9qUKVGOopwBJHFSL0o5HakHQg0uQDjHUUgOD0H0oDZYnHFC4wf5U4YIGR kUgGX4NKT84wKTjcTnqO9MBO0ZzgNU2BtzShTsFOA5570IQScdqf1FFLSEZopaSkHTrRnisLxbNJ /Yj2VsR9qv3W2hBOOWPJ+gUE1z/gQjTJbWIt+51W3MiE/wDPWNipH4rg/hXeg5paWkozQDk0meel L3oHWjpSD7xpc0Vk6ZpdjaapqN7aSs813KPtA3ghWA6Y7da1qKKKwvGSn/hHZZwT/oskc5wOyOCf 0rbVw6hlOQwyPpQUUj7o/Kqmp6Xbanp01lPGNkyFSVAyvoR7g1ieV4khh+z/ANnaXeSKCq3bNsDe 5THB+hxVHwXe6VIkum3MCRasJne4SZBmR88le2B6eldS2mac5PmWFsSfWIc/pUT+H9GlA36VZt6Z hX/Co28LaCwwdHs8e0QFRN4N8Ot10e2/75ph8D+GznOkxc+7D+tRnwD4YLZ/stQfaRx/WmH4feGs YXTyo9p3/wAaYfh34f2kLFcID/dnbimN8ONFbpPfqPQXH/1qB8PNMX7moampx2uP/rU0+AIkH7jW 9Ujz1/fZzTT4EuRynifU1Prv/wDr07/hDNSAwni3Ux+JP9aRvCWuqd0fi69z6Mmf60v/AAjnilP9 X4rc/wC9CDTf7D8aKPk8TQk/7UIx/Ksy6sPFi+JLKKTWLWS8NvK0UnlYVFBUMCMd8itMWXj5f+Yp p749Yuv6UvkeP1HF3prH3Q0ofx8vWLSWx/vc/rR9o8fqf+PHS2HoHI/rTv7R8cJkNodg/oRckU3+ 3fF6HbJ4XjY+qXGRR/wkfiodfCMn4XApr+K9fibEnhK66/wyA03/AITPVwAX8JX455wad/wnN4vL +FdTHOOFBo/4T05+bw5qo/7ZUyb4gweTJu0jUoTtOC8JAz7ntUPge+h0nwYbi58wxm6cfuozIeSO wGa218YaKPvTXCAdd1rKP/ZaX/hNPD3fUlX/AHonH8xQvjTw2xI/ti3H+8SP5ipk8VeH5DtTWLMn /rqKl/4SHRCcf2vZZ/67r/jUg1rST01OzP8A23X/ABq3FNFPGskMiSI3RkYEH8RT6KKzv4utOpcZ AFLS9venKeM0velGPxpM7jxyR+lLgZJx1/Wlx9KTAzxjml2g4pQqr0HNIU5HrQY1LZxR5YLe3XFP KAgelLtGKDxxS4460o6UGlooopMUY4xQRxVeW1jlkjlliR3iYshI5U4xkfhWL4Pgjbw7Zb41aS3e ZVJGSh8xgcenFdDwtRSXtrFOkElxEk0n3I2cBm+g6mpgwYcUUYpDmjvRkZxSjvQaQGgdTTqwPDYJ n1mTA+bUpB09Aore70tIelBHFQXdvHdwS20ozHMhRx6gjBrJ8LXUjaadPuW/0vTW+zTD1x91voVx W6KKjaSMOqF1DPkqpPLY9K4Lxn4bN3r0E9u4ie8RlTsGnUZUE9sqDz6gVteD5r24s2aa/NzHH+7a OdNtxbyD7yORwfY10yngc0tDMFUsTgDk1T07V9P1eF5tPuVnjR9jMoPDenP1osdXsNSMy2V0k5gb ZLs52t6fpVreDQXAOM96UnijtSg8UUUtFJWDckN47sgf4dPmP5ulb1LSGilpKKMUc0UVFcRiWF42 6MpXPpms3w3ov9g6NHp4n85o2Yl8bcknPStbBzzSFFPVF/EU3yYiCTGh/wCAiuM+I8ltBocNvHBE JrmX5WCDIC8n+n51t6LZ6XqOiWV3/Z9q3mwqTmFTzjB7VbbQNHc5bSbI47mBf8KuW1rBZwrBbQxw xL91I1CqPoBU1FFZuRkc80/PFI5YLhSB705SOfenA04YzjtQDzSMpJGfWnDAx6YpaUEEUDqOlL6U powOPrQPSnd6UHIoxxQevSloFLRRRRRRRRWD4VDRwajARjytSnGPYtuH/oVbcpwtcBdyN/ZutI9r cS629y0igQsxCIwMZVum0Adj1J610mk6lpVjZWcB1CNp74mVSzYaZ2OSQD78fhWnBqdldOEt7mKV ym8KjAkrnGfpkEVapaSjHOaAMUUbRnNFLWH4Z5j1MnvqU38xW3iijHGKWkIrn9Ys7ixv117TYjLO iCO7gX/l4iB7f7S9R69K1rDULXUbWO6tJRNFIMhh29iOx9qstnHFYWoDPi7RRjlYbhh+SitS7sIL 4RC4iEnkyrKmSfldeQePSsjVrGfTr/8At3TYy8gXF7bL/wAvMY7j/bXt6jitizvbe+tIrq1kEsMq 7kcdxVhelMuDi2lP+w38q870W7bQdP8APiXH9oaUs0Qz964U7OPc7lNTJMfCtrrYs4186OS1hUbd 2HZACxA68knHerltreqQrqHnTyeRFbCSK71K0MIWQnBUgfeHcAc9qIfE+oRLqyNL5/2SxFzFLNam A7iSMFc8rxmrttqWs22oaOl9LbSxaqjZjiiKmFwm7g5+Ydua6cZwKcBRRS0lGeawXO7x7GvUpprH 85BW7nBAxQQTQeMAUuOc0GjGRRiloooqG7cx2ssg6ojMPwFUfDUss3hrT5Z3aSR7dGZ2OSSR3rTH NHejHFcZ4xsJJFub+52+TAkMNuuc5LSqXY+nQD8K2tBsZ9LlvrMx7bQXBltSP7r8lcezZrZzRmlo orOON496dxQ/K0hHy59KUc8/nS7vlJFBXocnrTyMkCg8mlU/lQOAcdqQ5Cg55NPJOcDrQSRgUoz1 p46UucDNIG49qUEilzmlooPWlpM0UtFFFIelYWlYt/FGtWxb/W+VcqvsV2k/mtbjLuGKb5Yx1xXP 65pepS6tZXenQ20qRBzIJW2neVIRuhyBk8e9J4Z0a5s1iuL23ht54bYWypG27jJZmJ9WJziukHSl opKKWiiisHwoxezvWPfULjn/AIHit6iiiim7feoLext7WSaSCJY2nffIVGNzetWD0rBvDnxxpi+l lOf1St4UhXJyDXM3Kf8ACL6i99Hn+ybp83UY6W0h/wCWgHZT/F6dfWukjkDIGUggjIIPUetLJGJY 3Q9HBB/GspvDOnPBpsDRs0emMGtwW6EDHPqKdc+G9Pu11BZkdhqBVpvnwQVGFK+hGBVZ/CNlPbXU NzdXty9yFBmlmJdApyu3sMHnpTV8IwEXrXGoXdzNe232aWWVhnb2IAGB1q/Po0M11ptwZZA2nFjG B/FldvNaC9KdSEHHHWilpKKwEIPxAlGOV0xf1kP+Fb+KKMUtJS0UUUUVU1Vgmk3jngLbuf8Ax01W 8NDHhfS/+vSL/wBBFadLSVz/AIyX/inWXGd1zAMev71a3wOSc0uDSYIzS0tFZ+0E5pe9LjIwfWlI yMe9Jj680pQbcZpcZxz0pwHejac9ulABCdKNp29KdgkAYpSD97vRyxAx0oOelSKOBSkcU3OQMcCn HqKaTjHTrTupp1J3paQjIoHpS0hpaKQ9KwL7Fn4x026yFF5BJat7sMOv8mrdDE9acKQqCckUbBjF B470m/5dxIA9aRZN3cHPcdKeelAz3pAc5pc8UUZ56VheDznRpG/vXlwf/IjVu55xSbqXNLRRSZ5o zWFMN3jq1OPu6fIfzda3RwKM1HJDFMjxyoHRwQytyCD1yK5iznbwpqSaTeyFtLuW22E7H/VN/wA8 WPp/dP4V0s9zHaW8k87hI4lLOx7AdazrHxHZX0jIBPAyxecBcxGPdH/fGeoptp4o067l8tXlTdG0 sbSxMizRjkshI5ApbTxVpF9HNJBeKY4IhLJKylUVT/tEYz7VJYeIdO1OdoLW4zNs3iOSNoyy/wB4 BgMj3FZur+LrSK0ddNvIJLxZkjCEEhsuAQOxIGeB6VuwX1vcSTxxTIz2z7JQDyhxnn8Kqt4i0lYI 7h9RtkilUvGzOBvAOCQD16Gpl1exfT/t63kBtf8AntvGz86SPV7CW0F0l9btCTt8wSDbu9M0z+3t LFsbo6naeQG2GTzV27vTOetLd38ySWX2Y2zR3EoV2kkwSuCfk/vHjpU39pWn2v7L9qhE+M+V5g34 +lZMBz4/uye2mRc/9tGroKWiiiiiiiiis/Xjt8P6i3paSn/xw0aENugaevpaxj/x0VoUUVma7YS6 np628JQEXEUhLHjCuGP6CtIUtJS0UVQHWjqaXPIpd3OPWlHJpSOce1AI6DrTwBil6DNHqKAOlOA5 4oOcH9aUDrS4pR2opcCjANGB6UUtJS0UUUUUUh6Vx3ifUZMvbyW/lXVlKl7ZndkXKIcuAexAzkVf 8G3P2/SLicTGUNezFWJJ+UtkD8iK6KmO4jUszBQOpJwKw7rxlo8ErQQTyX1wp/1NlGZW/McfrVf+ 0PFmpbRaaXBpcR5Mt6/mPj2Re/sTR/wh3275td1a71PPWLd5UX02r1H1roba2htLaO2t4xHFEoVF XooHQVNSd/WlxgcUdqDmkzWH4PH/ABTkDYxukmb85GrVu7qOzt3uZiwjjUliqFiB9BzSWV5Df2kV 3buZIZlDoxBGQfY81ZHIpaQnFUL3V7ewmSOZbhi4yDFbvIPxKjiix1e01GV0tml3IMsJIXTH/fQF XhnnNYnB8ag8/Jpp/WT/AOtW32pQKB0qpqOnWuqWMtndxCSKUYI7g9iPcVmz2mr2nheWzs7w3Oox wlIZ5FALHsT7gd+5rnrbRb+8vLg/Y76BJtMkg869nDs0pI6gE4Xil07R7ljEZdJv0ktbOVd9zdh0 3lNu2NQeQfwq7Lol1L8O7PToYNtzFHFI1u2BvKkMyH3PNLOLrxBrljNDY3VlFYxymSa5j2Es67Qg HfHXPTis5/PPhTTtEXSLtbu1uYRKBCdibXBLhuhB56Z61Z8TwXtjrO3TiB/b8QtJPVHH/LQf8AJz 9BWgmlx2/jDS4o7XNtZ6a6RuVyEO5QBn1xn9axm+06dpl0TZKkUutsTJJbmRYI/+egT8PpzUMVub 61vPOSW5S41u3O+aDZ5q4XLbccDrW1Bplk/jXU3exgKLYxgAxDbkls+2cAVm2MUn9h+EFZHyt/kq yn5Bh8fTFRaY+kR2cNlqtrNJrI1FnZY4z5+/eSG3f3NuMnOMcV0doA/jfUHGMLYwKCP95zXQDpS0 lLRRRSHpS00nmlPUVm+JG2+GdUP/AE6Sj/x01Y0tfL0m0X0gQf8Ajoq1mjNLSYHpQMUtJS0UVm7s ck5pQx6n8qUsM57ml/i6YNKD8wP6U/rTGGCBipAwFOB4BpQSSTQTg0u4DmlDD1FKDz1FCng0uR6j FKWFKKWikNFLRRRRRSUtJWV4h06x1PSZLe+kSFfvRzMQPLYdGBP+cVxfgrxD/Zdnd6ctncX0qzs0 S2ce9WzwTu6YyOD6V0Zl8XaoP3cVpo0R/ikPnygfQcU5fBtrcsH1m8u9Vb+7cSERj/gC4H51u2dl a2MPk2ltFboP4YkCj9KnwOtN3KWIyMinUtMk3BTsGTjgZxk1k/bfEKk50a2cf7N7j+aU06nrynnw 6D/u3yH+YFZmoS6nPJ9sOk3+nzRjHnQ3sJXHurNtNZdn4+1MXElvJppvwuQHtvvH64yv5Gul8G8+ FLA8/MrNz2yzH+tL4uuJLfw1drAG8+4At4tvUs52jH51U0S5vINbuNLuLqN4LSCFFVYwoWQqSVU9 SAozz610XmKuQXAwM8nt609TkdaU1zNxqusapdX1tob28C2LCNprhdwlk7qPQD19a6NAxVd+CwHO OmfanEDFcrqOt6do3jJ5dQuRAjaeqqSCdx3k4wPal/4Tm1u2aPSrSS7cdGlkSBPzY5/IVsaZfyy2 m7UJ7FJyx+W3m3KF7cnvV5Zon+5Mh9gwNPA6cUEAc4oCqD0FLgUhA64FINpO3jPp6U4DAwKpy6fa y6hDfSRgz26skbEn5Q3XA9fereKXA60YGc45owPQUmOeBSAZySBmsPT+fGesn+7Bbr+jGt3nFOpB S0hopaKKSk7isrxU23wrqh/6dZP5Vo2y7LSFfSNR+lSY5pR1paSigUtFFFZgFLyevWlKninA5NKv LZNP7GkbqPegD5+nBp4+9Tu5pmSWbFB7L1pQPnIzxTlALY7UAYfg8DrRjrnqfelJJQY61IvQUp6U 3JwCO5pTkDNLRSZwfalBooyD3oyKwtc1q90iYuthBLahNzTS3iQ4bPTDdeP51zqfEi4uXEFpojyz PwirNuLH6AfrWxHF4w1RR589po0R/hiTzpT+JOB+Galj8GaaZVn1BrjVJhzvvJS4B9l6D8q3YIYr dPLhiSJB0VFCj9KlyKa0iKwVnUM3QE8n6U4EdM1n6rqVrp9uRNdJBJKCsWeSWx2A5OK5WLVJ5dBs fFSuXuLL9zfqvCzRhsOcdiD8w/Gu3jZXCupyrDIPqDUlFJQazr7RbHUrmOa9t/tHlDCo5JTrnO3o T9atCKO3tWSKNY1VTwigAce1ZXg0f8Ulp3vET/48av3umwag9s1wHP2aYTR7WwNwzjPr1qG30Syt 9Tn1OOFvtM/3mLEjpjIB4BI71x3iDSdRur3VrqHTrpzO6WcCDJ3AnLSn/ZHQdsgVreJrForfR4kS +aCOZI38gsTGoGdxC8knaF/E03w6t1f38d8yX0IgkuHmS5LKvzt8qAHrgAHPbp3rTi8L2cWozXSz XPlzzC4e28z92ZOu7H/18Vu0HpXNm0tr/wAa30dzbxzothENsihhyzdM0yfwNpaytNp8aWsp/heM Sxn2KN0H0xVq08M6fJbf8TLR9MM+TkwQYUjseeRUkXhLQYZ1ni0qCORG3KyArg/ga2e1YvirULjT PDt1d2pCTDaokIyI9xA3Y9s5rJvvtfhqxvruHWZLspYGVbe7bewcEDzAf7vPTpVaGfXLNZZWN4lu dOlkke7uI3bzQuVdApyO+e3Sn2s2p2a+HbmTVLi6OpOqXEUuChBjLZUAcEY/GmQNeadq/iTUP7Ru Jzp6qTHJjbNmMsA3HAGe1TaLqOtvfWhn+2zW1xbM9w11CsaI+MgxkducY9MVoeFJtW1DSrfU9RvV lFxHlYViC7eTyT3Jrox0paKKKSsLSmz4s1/PYWw/8cat2loooooooopKxfGT7PCOpt/0wI/PiteE YhQf7I/lTzS0UUUUUUUVnilHegGnYpwx6UdqUKCRSlRmlA54707FIVyfSgryKBGA27v605R8x5pV ByaTYckZODRjGAOgqQUEZpADtAoIJPTinUhppHJz0o3DIGaq3+q6fpqF729ht1/6aOBWL/wlz3gx oej3upZOBIV8mL/vpqUWPivUiDeanbaZCw+aKyTfJ/323Q/hUNz4LhjtWeyCXOosw23WpMZtnPJA 6Z9B0zWpo2g2WiQkQIWmfma4cfPIfX2HsOK1s4HejcM9aTeucZFUr/WdP09IHu7lI1uJBHE3UMx+ n86xdd1aGKWe8+wJNNok0RZ5eqpJgMyY74PeoLi1k1nxPfaXe6hcLbfZUuLJIH8vOeCxK8tg46+t UdNvNQW507WriCa8ktYZdNvhEm6SN1cYfb3zjnHartvp99cWPiRf7Pa3tdQVpLWN8B2Yrg5X+HJA P410+nI8WmWsUufMSFFfPqFGatCilpDQRmorj5beU/7B/lWZ4RUp4T0xT1+zqfz5rYoopCDRzSnp S0lYViD/AMJpqrHoLWAD/wAerdB70UE84o71Bc2sV3BJb3ESywyqVdGGQwPUGs6y8L6Tp/m+RaBj NH5bGVjJ8n9z5j932plt4V0i1WdYrVj50RhYvKzFYz/ApJ4H0q22j2bCxHknGntutwGPyELtH14N Qv4es5NTmvyZg1wmyeESHy5hjHzL3OOKjsPDFjp06zRG4laOIwxCaYuIoz1VQeg4H5Vf06wh0vT4 bG3BEMC7EBOTj61cooopKDWDoxLeJvELeksCj8Ix/jW9S0UUUUUUUUVheNBnwnfLnAZVH5utbacI B6AU6iiiiiiikpaz1IIpRRRnHanK+TjvTvqacCMDml70bsU6lzilzkZo46UxZGZ5AyFQpAU5zuqT PWnZpp4/GlBFLQWA60m4UbhWZqPiXRtL4u7+JX7Rqdzn6KOazT4k1PUeNF0GeRO1xeN5Kfl1P6UD Q/EGpL/xNdd+zIesGnJs49N55NXLHwlolhMJ47FJJx/y2nJkf82rZCgdOBQWC9aN4xVO7upGtLk2 DQy3MQKhXb5VfGcNjp1qG21qzleztnuIzcXcRki8sko5X721u+PSsO/8VySR2ywk2QnuZ4Gk8rzm Hl/3VHc1p+HLu/vbBxqUe2aORlVmUK0ifwsyD7pI7Vg3GhSQazZ6HLayXGjyzyTRMBlYFaNg0ZPY bjkVpaLoF4kGrWurSLPHchYY5OMyRqm0Mw9cfyrUs9Bt7X7FIzNNc2UBgSdzhinHBA4PQVoJEEJK qqljlsDGT6+9P28YpQKKKWkIzS1XvjixuD6RN/KqXhldnhnTFx0tY/8A0EVq0UUlGKD0o70Viaap /wCEs1p8f8s7cD/vlq2j0pR0oxyKKWk70DvRRRRijNLRRSd6KwtDGdc19u5u41/KJa3qSlooopKK KWkrD8ZknwzOg6vJEv5yLW2vFOoooooopPWgdKWstf0pw4PFGWA6ZPYUp5YE8H0pRw5I5xSkkknp Txkj8KXk0Z9O9KSc04sR9aN2V4FKGOemKbnk08H14p44FB+7mgEE06kOKw9Um8SSXpt9KtbOKDaD 9ruXJ59Ag9PeqkfhXUL0H+3dfurpW6wW58mP8ccn9K1dO8PaRpYzZWEETd32ZY/UnmtHHcmkMiqy qSMt0Gev0pd/tUN1fW9lbNc3cqQwp953OAK57UNfilu9K1LT73zbIXRtbtFJAUuMKWB5BDY6+tRa 94i1TS7ucx+QFgIkS1EZlkmhGN8jEHEYHOM+lVbNdM0Dxa91d3R8nULTz4bm5l/iyAy56dCuKmtd CluLHUNJAe3bT7wz6ZcgYCbvmUA9wCSCPereneG5Z9CitdVbybxZ2uRNavho5GYnKn8cela2k6Jb aQJ2ieWaa5bfNPM+55COBk+wrQK+9AXFLS0UUUUUUVT1ZtmkXrelu5/8dNR6EMaBpwxj/RYv/QBW hRRRRRRSHpWNpW8+I9bYqwG6AAkcHCdq2BzS0tFFJRilooopKM0tFFIawvD/AM2p683/AE/4/KNa 3aKWiiikoopaSsPxeN2ixp/eu7cf+RVrc70tFFFFJQBijvQKWsvbwMdqcFPOaME8U7GWowetOwdu 2nqCExRz6UAEY75peWPTpQ4+bn0oOccLnilUjoBTlAJbvmgYzxT+howc+1AAzS9utByFo2+5/Olx 71nTa3ZW2pRaa8jNdT8pGiEnHr6YpqajdS67JYCCPyIYRI0u87skkAYx7E1T1x/J8ReH5WJEZnlj z7tHx/Kta7ikntJYo3ZJJI2VXQ4KnHBBrhoNPubvwZBqNm8txqkV0s1yznezyRkq2FPGQMkD2FWb TSDq1pq8EMN5/pkSsb6/yrvOvK4THyhfUf0rWl8My3k5uJNRmt2u7dIr+KIAibaOzHlep6dc1rw6 RYw2dvafZ0litVAiEo3lcDA5NXNox9KAuD1p1FFFFJnnFApaaGySMdKXNLRWbr7+X4f1J/S1kP8A 46al0hduj2IPUW8Y/wDHRV2iiiiiikNIFAJOOTS0tFFFJS0UUUmaWmqgXpnrnrTqKSisTw581xrR /wColIPyRK3KKKKKKKKKKKwvFuf7MtlH8V/bj/yIK3BS0UUUUUUUUVnE+tOGMUdKBxzTh7U8dKX+ Gl6mlHApR60Hjt3pQOvvShfzFAxnPenbR6UhHPHpSigAZzQQKMelLRXLeN7WWOyttYteLjS5hMMd 0PDD6f8A160PDrC8t5tVwR9vk8xAeojA2qP0/Wp9d0mPV9Me2ZzHICHhlHWOReVb86k0t7yWyibU IxFdbcSorZG4dwfQ9ant7K3tN4ghWISOXfaMZY9TUxUHqKXaPSjHNLRRRSClopD1oH0oNNUtuI24 HY+tKBzmlpayfFBx4Y1P/r1kH6Vfs02WcC4+7Go/Sp6KSgGilooopCM0UUtFIelAORS0hpaTvS0U 0MTnjpS0AYoNYXhck/2wT31SfH4YH9K3qKKKKKKKKKKwfFn/AB66ev8Ae1GAf+PVujvS0UUUUUUU UVllsinBscU7qCKQf6sjNOB+7Uo6ilyAKUGjODilPTjpSFjnFOpS3y9KVTkA08dKO1FBFJjJ4ox6 UtLUU8MdxC8MsayRupVlboQeCKbb28dtDHBCipHGoRQvAAHQVN25pNoHQYpaWiiiiiiiiikpaKSl oorF8WyBPCuo+8JH58VrRjaqr6ACpKKKQgUDpS0UUUhoFLSHPaig5o6Ck5z7UvNFFLRSUClpKw/C w/cai397U7g/+PYrdopKWiiiiiiisLxMhk/slM9dTiP5BjW4O9LRRRRRRRRRWUDnNKeACadn5h70 oPBGeKUEFSM/Q1IhyAelK23HWgY4xS+tBI8sknAp3CkHsaUZHHY0gJIPOKVchPepA2CBTs0hPIAp A3OPSnA5NFJn14pc0A5paQ0ZozQTS0UUUUUUUUUUUUUUVgeNWEfhO/bj7q9f98VDceONDikEUFyb qQ9FiGB+LNgCptN11rm4aS6uNNtrbb8kYu1kkz6kg4ArXW/s25W7gb6SD/GnieFukqN9GFSBlPQj 86Mj1paKKKKTNRybgDhgvB+b09653wvr66hbbL/UoJbuSWTyo1wrbFYgHAPtn8a3bwXRtn+xPEk+ PlaUEoPris62k12UrJ9q0uaEnDGLfx64OetbCnk06ilopKWikzRketITyKw/COG0maUZxJe3Dc/9 dGreooooooooopKw/EGTeaIvrqCk/gjVuClopD0opaKKKKKzsc0EZpFBznHenhQTilVQOgpVOOMU 7BwaaBg8/lUoHI96RkDKVz1pQmFAznA704KfWk2nB9TSgEKQetIucA4qamkc5o/izQh+ZqdSHkUt J/ETS/jQaDxSY+YmlOaWkzziloopKKKWiiiikPailrB8YKJPDc6NyGlhUjGcgyqMUy88GaLdMGS0 FrKDlZLfCkfh0I9iKNP8MpbymO8isb63C/I0lmiyqfcgYP5Crp8OaKQc6NY/T7Ov+FRnwtoJ5/si 0X6Rgfypo8JaFkkaZEM/3Sw/rQfCeidrLH0mcf1pD4S0dhxDcL/u3co/9mo/4RSwAwk+oJ/u30o/ 9mpv/CLW4GF1HVV9xeuf504eGgCdus6sM/8ATyD/ADFL/wAI/cKfk1/VQPQvGf5rSHQ9QH3fEV+P qkR/9lpmpi+03wveBZZ9RvPLZY28obmLcDhewzWINIn0nUtCtLPTpJY7O2dgwA2NO2FJdu2Bk598 Vd8VXSJqOlWd67RaZM7tctztcqPkRiOxPUd8Vr6Ja2UFm0lhZNaR3LmYxsCpye+P4cgDimXMXiL7 XI1pc6eID9xZYnLDjuQfrTAvikdX0l/wkFHmeKQP+PbS2PtLIP6U0XHikH5tM04/7t03/wATSi88 TA/No1mfpeH/AOJp327xAAN2gwt9L0f1WkbVNcXr4cZv928Q/wBKada1ZfveGro/7k8Z/rQuvXzf f8N6kvrzEf8A2asy9v8AU/tEl3ZwaxayEfNDNbJLA2Bx/ECvuQaoad8SQ8vkXmlTMykgta/vMEe3 Wt3wM2/wnayc/vXlfn3kY10VFFFFFJS0UUhrC18n+19BXsb1j+UbVuqcilooooooooorPFL35oC8 fjSjrn0pwHApSMGl707aKXuKcBTs0nWlpQBTdg9TT+1FHWjvS0UUlGKKKMc0tFJiloopKKBS0UUU UUUVieKT/wASqJc433luP/Iq/wCFbIHzZp1JRRRQKKWikpaaQe1IVP0pojznIBzzTlUgkmnUtFFF FJRntSMuRWVe+HbPUbv7RfedcrgbbeSQ+SCO+0cE/XNXPJhsrSQQQxRIiE7UUKBx7Vn+D1K+EtNz /FCG/Pn+tbdJmig0CjIoopaQUGsLXOfEHh9f+niU/lGa3RRRS0UUUUUlLWfjpmlznmlpcU4DjNKR wKWnAYH4UvalHIpfegD3pDkc5pRlTk9KWlB5pSQKAaKKWiiiiiiiiiiiiiiiiiiiiiiisLxTzbae ufvalb/+h5rcxS0UUUUUlLRRRRSUUtFFFFFFFJijFLVe8jea1nijxueNlXPYkVBotg+m6JZWMjhn t4VjZl6EgYNX6TFFLSUYopaTPNIO9FY2qBW8TaGD1BnYf98D/GtkZyaU9KB0ozS0UUUU09RTqod6 MU4UtOHSine9Ln1pR15pQO9OHpR0pDyKUjjFHelA5oZcjFAGMUtFLRRRRRRRRRRRRRRRRRRRRRRR WF4mBP8AZKjvqcP6ZP8ASt2iiiiiiiiiiiiiiiiiiiiiiiiimlc96WlooooooopKKO1YmoN/xVuj p38m4b9FrbHSlopMUtFFFFJS1nnPH1pe+KUUvend6WndMe9KOtO75oHOKd6UUpGB9aMc0tFLSUtF FFFFFFFFFFFFFFFFFFFFFFFFYniDm70VBnJ1FTj6I9bdFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFIawb058b6WP7tpOf1QVvClooooooooorP7Uval7A0vTFKD1p3cGnClHHNOAyKUdBijuBS96 UUHrxS0UtFFFFFFFFFFFFFFFFFFFFFFFFFFFYGvSqmsaDvIVftbkknAGIm/xqxP4k0uGVoVu1uJw M+TbAyP+S5qzp13c3iNJNYy2i5+RZWBZh6kDp9Ku8+lFHNLRRRRRRRRRRRRRVO/1K001FkvLhYEY 4Bboaitdc029nEFrfwyykZCKcnFaFLRRRRRRRRRRRRRRRSGsOfDeOLTP8Onykfi61uUtFFFFFFFF FZ/alzSnpQacvSnDpinDrS/w5paUdKcOoozjjrilHTNHYUtHeloooooooooooooooooooooooooo ormPFNjbapqui2N3GZIZZZdy5IzhM9R74qnJ8PLGGUTadKUI4MNyDJGw/Ahh+dWrHwrZyIy3+mi3 kQ4Vre7kKuPbJBH0q4PCOkjO0Xa59LuTj9aB4TsF5W51Ffpeyf404eG4R93UNUX6Xj/1o/4R1/4d c1ZfrcZ/mKQ+H7nHy+INTHuXU/8AstKNDvlGB4i1D8RGf/ZaVdI1NeniG85/vRRH/wBlobTNaH3P EUmP9q0jJ/kKa2n+IOia/H9Wslz+hFKtl4kU/wDIas3H+1ZH+j0pi8Sr0vdNYD+9bOM/+P0bfFI/ 5aaS3t5cg/XdTd3isH/V6Qw9d0opfM8UA/8AHrpTD2nkH/stKLnxKOumaefYXbf/ABFNfUPESHA0 CBx6rfD+q0tvqOtSXUcdxoLQRscNKLtHCj1x1NQ32sX8mrSaTo8cL3UMHnTST52R54VcDkkkfhWj bSXaaak15Ahu1jzJFbnILei5qkPEU+35tA1ZeM/6pT/I04eIzn5tG1Zf+3UmlPiaBfv6dqi/Wyf+ lM/4S7TA21kvlP8AtWUo/wDZaT/hMdFVgrTzqT/etZB/7LT/APhLdCBwdQC/70bD+YpR4t0Dp/as HHXJI/pTx4p0Fhxq1r/38py+JNEc/Lq1of8AtsKmXW9KfldTtD9Jl/xqRdU09vu39sfpMv8AjTxf WjfduoTn0kFSrLG3SRT9CKd1oparXt0tlavcSJK6IMkRIXbHrgc1DY6tYaiCbS7im9UDfMD6EdRV AZfx2AekemfzkH+FbopaKKKKKKKKKzg2T9KbuxmlVhjmpOo4pFJDbTUgbkU8f1oz0HtSg4pw6e9L 3pf4qUUUtFLRRRRRRRRRRRRRRRRRRRRRRRRRRRWHqgLeJ9DIBIBnJOOnyCtuilooooooopKWiiii iikIyKwLrwykurXF9Dd3MAvECXMUTACUDpz1X3xW8o+UcYxTqKKKKQjNNMSHqin6qKYbW3YYNvER 3ygphsLM9bSA/WMf4UxtK05xhtPtWHvCp/pUb6HpLrhtLsyPaBf8KhbwzojjDaRaY9ogMU3/AIRX Qsk/2XBk9wCKQ+FdDIx/Z6L/ALrsP5GmHwloxHEEq/7lzJ/jTT4Q0rHH2tf927k/xqvfeHra0hD2 0erXMjNtEcN86498lgAKxpPAV1qN4by4uPsDHoI5GmkPuXOMH6VoeHdLbS/F1/bm8nu9llF89w25 uWbge3FdcOlLRRRRRRRRRWZznoKOcHil9OKkz2pox5ucjpThwo9amXGPemnBbOccUDnAzSg4Jx0p T9etSjjmm5O884Ao3ZXI7U8dOaRiR3xS5NIDnmnZoB4oJozS0UUlFLRRRSZopaSiloooooooqNo8 uGwMjvT6WiikpaKKKKKSlooooooooooooooooooooopuPmzQFwOKdRSHpWHYfP4v1hx/BBboD+Dm twdKWiiiiiiiiis88UuOopQBxXLQ6r4m1DU9Th0yPTDBY3RhxMHVjwD1Bq1eaxqujeH59R1SztWu I5URYoJDtYMQM5PQ81b1fXU0oW8Edq97f3f+ptYurepJ7AetVx4lvLO7hh13RzYQ3DhI7lZxLGGP QN6Z9a6EjJ5zzTsAc4rEvfFenWN7NbiC8uWgx5728BdIvqa1rO5t721jurWQSwyjcjL3FZ994r0T Tbt7S8vPKljA3BkbAz05xirmn6rYavE02n3K3EanazJ0B9DmrgTjg9af2qtcXdrBNHHPcRxPIcIr uAXPsO9SltmSThRySe1JHNFMgaGRZEPRlIIP4ing4o6ilB4paB0opNwpe9FIWA4NKDkUtFIelJnk UtJuxQTxxSg5FGaKM0tFJRS0lGaM0hPpS0tJRRmgHNFB+maB0paKKSilooopKKWiiiiiiiiiiiii kIyMU1YwHZtoDN1IHJ9M06loooooooooqhQOlOHbnHv6VxWjaOdV1HW7hdSvrMpqDJi1l2qeB146 1b8XW5s/BX2Z7ma5xcQr50xy7fvB1NSyEQfEuM3Bws+neXbFuhYN8wHvj+dN8UXer6bH5k39l3Fj JcIsMEsTGRssMHrgkda6wHIB9qcOB64rmbvULTSZ7zTNCsnvNUu3aaaJDlUZuN0jHhR7Vp+HdNbR 9AtdPlkEkkKfO+eCxJJx7ZNQ+J9QkstPjgtVRr69lFvbkqDhj1b/AICMmr+k6Zb6RYR2dsp2R/eY 9Xbux9yavDtS964Lx/aSX2safDbnE8VtPNHjqWUBgP8Ax2tDVtY/tTwtYR2j4n1vZCvbaCMyE+mA DVPQdYi0DwBaSpA08slxJDbwrx5jmRgBnsK001/VrC/tINcsLeKK8fy45raUsI37KwI/UUXXiTUj rt5pOmaQl1LbKrF3n2LgjPPHXniq0Xji5udNk1K30KWS0tsi6czKChH3go/ix61q3/ia1s7ezaKG a7mvxutreEAu4xnPPQAd6fpfiFNQuJ7OeynsbuBQ7QTgZZT/ABAjgis1fH1hLbNcpp+oPbRErPOk OVhOe/PP4dKTX/FEljf6UlokskFw4eR44t4ljI4Cep6H6V0yPuUMAcMAQDwaw7nxvo1rcSxM1xIs JKyzRQM8UZHUFgMDFN8S642nwaZcwXSRQT3SCWUgMvlEEmr2m+JNK1aR4bG6EkqDcYypVseuCOR7 0y98V6Jp10bW71CKOZfvqcnZ/vEDj8avSajawwRTyXEaRTMqxuW4Yt90D1zTnvII7hbeSVEldSyo zAMwHUgegrL0XxLbaze3tvEYx9ll2RkSA+cuOWA9Km17XoNCs0nmTzWkkVFjVwpOTyeew71Dd68t trthp6LE0F3FJI1x5nChfQ9DWpHdRTRCSJ0lQ8Bo23A/iKf5yCTy9y78Z25Gfypx55rH1XxLDp15 HYQWlxf3si7/ALPbgEqvqxPAo0vxLHfX7adc2VxYXqpvEE4Hzr6qRwa12lVAWYgKBkknAFc5J480 sSP9ntr+6gjJD3EFszIMeh7/AIVu2WoW2pWkd3aSrLDIMqw/z1qzVNdStDqr6asoN2kQlaPB4QnG c1b3e1Ju5polRpDGHXeBkqDyB24pltd292Ha2mSURuUco2drDqPrU4ozR3o6Um7PagZ9vwpaMUY5 paKQnAzTVfdx3+tOpaKSj8aTPGaAc9KdSZozS0UUUUUUmeaKWiiiiiiiiiiiiiis+lJ4pwqGGztr YyG2gjhMz+ZJsXG9j3PvTdQ0611O2FteR+ZEHVwAxHzA5B4qPVdJstZtvIv4d4Vt6MrFWRvVSOQa z/8AhB9JcFria9upPlKST3Bdo8EEBeOOla40uH+2f7V8yfzjCIfL3/u8Zznb6+9XPXiuZi8IXNpN cS2XiC8tmupTLJiJDuJ+vpWn/Z2pCOwQaxKWt5N1w5iXNyvof7v4UXmjm81/T9TafEdir7YdvVmG Ac+wzWqoHXrk5p44orAvNMup/GWn6mixm1treSN8tyGbpx3rL0XwxfWGq3Mk+17W2WYaaobp5hJY n07D8aji8OaqnhPSVjijXU9NuDcCF3+VyS2VyPUGrEsWr+JNQsI7vSZNMsrOYTymaVWaVh0VdvbP Ofar2k2V1D4q1y8mgZIZ2hEDnkPhOcfQ1k2enX9t8OdQt3spVupPOZYNvznLccfSodZ0yaD+wr6a K9a1trMW9x9kJE0JIGGwOcZGCBVnw7bW9xrU1/aw6o8MNu0SXN/I3zE8lFVhnAx19ag06OWH4UXe YXWR7adtm0huc9utP1S4i08eEbu5Lx21uv7x9hITMQAz6V2YYGPcuWGMj3rzC41cz+H74PrC2k7t KP7HtbZQc5PDHGfcmtTVbrThoXhSaaWN7RbmMyMOVwEIPHsa0Lm6tdU8daQdLkjuHtYpWuZYSGVE IAAJHqc4FVvDF9pNj4dvY9VlhjukmlN+k5AZySex65GKzyklr4I8PJdhok/tKN1EnGxN5K59OK37 2SC4+I2mRo6SNFZzl1BzjJXGag8F29r/AGhrUqQxLIl68SsqjKIOw9BUnj60huLHTmkiVnN/FHuI 5CsTuGfQ45qDVtKsrzxzpGny2qGzjspG8kDCcHAGB29qhtx/Ymp+Ko9Lh2R21tHLDAn3VcqxJA7V kRaVdT+G1u4tJQ3MkfnJqxvwr7uu854A9ulej2DTPYQNcbTMY18zacgtgZ5rnPDWD4r8SGYk3AnQ DPXy8Hbj8P5Cte6udMXXbG3uEVtQdJGtyVyVUfe57DpVLxzNLD4Pv2iYoSgVmB6KSAamkkudL0iz j0XTFvI1RV8tZQm1MdQehqLwdcW1xp92bbTxY7byQSxeZvzJxuOf8OK6IdK5+G9uX8a39k0gNtBZ RyKm0ZDEnJz17VgW+peJrrw1da4urxRrbGRo4fs6nzVU/wAR7fhXZ6dcte6ZbXTKFM0SuVHYkZNc xp0Won4jaiwuICscMQlBjOTGeVUehHrWZ4fn8Q2+jahe6WbFbaO6mlYToxeYg8gEEAdOtbt54vkT StLktbeL7ZqiBkWeTbHEMclj6DP41JpHiK8fWBpOo/Y5pZYmliuLKTcjAdQR1BrY1W/bTtJub5UV zBEXCk4Bx71z3/CX6pDY2+q32irFpc+3MqT7pEDdGK46fjU90274h6aoY7Rp8zYB4PzLinXXii/E 122n6HNdWtkSs07yCIMR12A/eA9anufFtpbaDa60YZZLa6ZVUIPmG7Pb2waLDxULrVI9Ou9MvNOn nVntxcKMSgdcYJwcc4NMu/F8MN3Pb2enXuom1bFw9tGCsXHPJPJ9hzWrpup22q2Ed7aSiSGUZDYx j1BHY+1Qap4gstIeKK4MjzT58uGFC7tjqcDt71DbeKdOvLG5uojMBaD/AEiF4mWWP6r1qh4K1a71 m1uru7vDM5kwIRDsWEZOAG/iyMH2rX1TX9N0Xy/t90sJlJ2LgszY64ApkPiPSZ9MfUo7+E2kZ2yS 5ICHIHOeRyRVy4vre1hE080cUZIAd2wCT0Gaguda02zZ1ur+2hKAFhJIARnpxTjq1ghiD31svnDd HmVfnHqOeanaZEIV3VN/3Qxxmmx3cEkXmpPE0Y4LhwVz9elSq5IzwQehFLuJ6VUTU7d9Uk01WP2q OETMuONpOBz9atbz6c07cepFG7nFLS0UUmKKWiiiiiiiiiiiiiis/NGRT6U9qTIz60v3iKepAFOX kZp3rRjnNLgHijIz70AjNPHSikwKNoz0pdo9KTYPSjaMYxxRt54pNvXtS7RQVHcZpDGpBBAOfUUb Fx069aj+yW4cyeShdhtLbRkj3pv2G0KLH9mi2JnauwYXPXFFrp9lZIyWlpDArHLLEgUE++Kjn0fT Lq5FzcafbTTDGJJIlZuPcipLrT7S+tntrqBJoX+8jjINVLDw3o2lzJNY6fFBIisodc5weuT36DrU kGh6Za6lLqUFosd1Mu15FJ5/DOM+9P1PSbHWLM2l9AJYSwbG4ggjoQRyDUUOiWEF7bXccTCa1gME TFycJ6c9adDpFpBqF5fIjedeqqzZYkEKMDA7dayv+EH0fIUtdm1EnmfYzcN5Gc5+76Z7V0QjRAAq gBRwB2rF1fw3BqV2L+3uriwvguz7RbnBZfRh3o0jw5BpdxJeS3U99fSrsa4uGy2PQDsPpViz0lYd JfTru5l1BJNwdrk5LAnp+ArHj8L6vZxfY7HxLcR2I4CPErSIvorVNZeGbjTvDtzpmnam9vLNMZYp 9oLIOOPfp1966RAyxqrNuIGC3qayItImi8R3+q+chW6tkhSPBypXPJ9uaoQeGry38CT6F50L3csc i7xkLlj+dblhA9ppltbNgtFEkbY6ZAANY9vp2qWvjG7v44bd7K9iRXdpCJIyinAA75JqLSdD1Cy8 GXemyxxm7lM+1VfKnexI5rPvfDd9/ZWiTJZwXd1pkIjnspSCsqkDIBPGRiruh6ZONYa/bQbPSLaO MrHGEUzMx6ncOAPar/jJgng/UyTx5BGfqRXPXD61r3h+20JdHmtRIsaz3cjL5fljB3LzkkgDittr K5/4Tm2uhAxtYtPaIS4+XduHH6VzE1rd3n22LVdK1a91UvJ5AVyLZV52kEEDA9OtWhFLceEPD1uL OdGh1CFJUeBgVwTuJHpz1rZ1WOSTx1oTLE7RRxzsXAJAJXHJ6VzMCWujXOo2urX2sWU5uHliFozb bhW5BXAOW7V1/hKyWx0CFEt7i2813k8q5cPIu455IH44rO1C7h0Xxyuo6lmK0nsvJiuCuUjcNkgn tkUzTp11PxBrGu2aEWIsxAkxBAndcksPUAcZq/4FCjwdp+CDlWJ/FjVDxP8AZz4jszDqn9lanFbs Yp54w0EiE8qSeM96j0BY9aj1/TrqOykeTbHNd2QPlzErwfTI9qo6K9z4gutK0i7U+Xom57wHpJIh Kxj3Hf8ACtPTbK0vvHWvSXNvFN5KxKodA2Pl561i22l6cfhvq181pEZt8xilZfmQBsIAe2PatXXL WPUJfCVncgyJKcyKT97Eak5+tNg8P6XL47vbD7IgsY7SOU2y/LEXzgEqOM4zVCDUrrSPBGrCzldB DqDW9u5O4xIWA4PtnilW11GxezudM0fV4LpZk8+S4uVeOdCfm3jdzxyMCtSy02J/iNqDia4Ahhjk x5pwxb+E+q9wKj8NW1/q91e3l5ql4LeC/kWGCOQgHB/iPUr0wv1pBr97pGk61ZTSvPf2lz5Noz8s /mf6v8s11el289rpltBdztPcJGBJI3Vm7/rV2iiiiiikpaKKKKKKKKKKKKzgOc0venDmnU3oKcvX A/OnMcc8jNOj6fjTh0p1IcggjvSc559acOMnPWlz096UHnFJk/hTs0d6KB0oNFLRRRRRRRRRRRSU YHpRilpMCk2jGMUbR6UpApoXAxTqMD0FGB6UmOaMegpFXjkUuBnpSgD0qpqOn2+qWE1hdIXgmXa6 g4JH1/Cp4okiiWFBhEUKB7Cn4HYUYHajA5NKBx0pCq56D8qXAprRo4wygg9QRml2Lt27RjpjHFIk aIoVEVVHACjAFQ3dhZ38YjvLWG4QHIWVAwB/Gq81o1jprwaLbWsEijMMZTbEG9wKqeHdHm0yC4lv JElvryUzXDxjC57KPYVoxWNrBcz3EUKpLckGZwOXIGBn8KrnRNN/st9LFqgs5M74snBycn361I+l 2ctxaTvCC9jn7Ocn92CMfjx60Jp1tDqU+pRoRdTxrG7EnkL0GKqxeHNOh0u603ymktryR5JVkbJJ Y5PPb2qjb+EYori2a71K+vobRt9vBO4KoR0Jx97HvVxdB2eIm1qG+niaVAs0IAKSgDj3FTaJpCaN bzW6TPMJZ3mLOACCxziudhtrXxD48XUbWGX7PYR7Z3kQqHlBIUAHrjJOfpXTz219LqtrcQX3lWsY YTW+wHzSehz2xV+lopD1FFLRRRRRRRRRRRRRRRVDGBj1pNpGKcAAT6U4c9aTbnJNPAxTtuf6UqDj 60/HFB6GkIJAHTFG3gg04ClxwPajHOaMYHFAHApcUtFFFFFFFFFFFNwdwPP0p1FFFFFFFFFFFFFJ zmloooooooooooooooopKWikxRS0lJtFKRRQRTDvBGFzk889BT6WiiiiiiikJxRS0UUUUUUUUVQ7 04ijoTSilHQ04U7PancCgHNOPpRg9KXA6e1A60tFFGaWiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiikPNFLRRRRRRRRRWfnIpc0pGOfajpzTs0uecYpyH5qV jwSKcOgpd2Dil3c0buRTgc0delL2oBz0oIopaKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKz+1OHShwcYBpcfLigc4pdvzc0/GQe1LtJFKAeM 07HOfag8GhQcU8dKQfKaUcilpaKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK KKKKKKKKKKKKKKKKKKKKKKKKKKKKKo4p2MClApcYHSgDHangAg0D0pRx9adjkUuM8e1LijFKKMUU tFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFJRS0UU UUUUUVSwKU0oPSnDpjPNL25o6A04Dmlpe4pT1pRS0Cloooooooooooooooooooooopu4A47+lLS0 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUhUN1paKKKKKKKKKojrT6X1oHWlH3aB 1p46U4dB9KB1paWlopaKKKKKKKKKKKKKKKKKKKKKKTaM5xzS0UUUUUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV//9k= --part1_8e609.2871380c.3973e273_rel_boundary-- --part1_8e609.2871380c.3973e273_boundary--