X-Virus-Scanned: clean according to Sophos on Logan.com Return-Path: Received: from poplet2.per.eftel.com ([203.24.100.45] verified) by logan.com (CommuniGate Pro SMTP 5.3.0) with ESMTP id 4067312 for flyrotary@lancaironline.net; Wed, 06 Jan 2010 16:57:38 -0500 Received-SPF: none receiver=logan.com; client-ip=203.24.100.45; envelope-from=lendich@aanet.com.au Received: from sv1-1.aanet.com.au (mail.aanet.com.au [203.24.100.34]) by poplet2.per.eftel.com (Postfix) with ESMTP id D9E44173C9E for ; Thu, 7 Jan 2010 05:57:02 +0800 (WST) Received: from ownerf1fc517b8 (203.171.92.134.static.rev.aanet.com.au [203.171.92.134]) by sv1-1.aanet.com.au (Postfix) with SMTP id 5551ABEC001 for ; Thu, 7 Jan 2010 05:56:58 +0800 (WST) Message-ID: <15DBD2C92F7D43D6BE32ADD6F2C1DDFD@ownerf1fc517b8> From: "George Lendich" To: "Rotary motors in aircraft" References: Subject: Re: [FlyRotary] Re: Waste Heat was [Fly Rotary] Re: Air Flow Question Date: Thu, 7 Jan 2010 07:56:59 +1000 MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="----=_NextPart_000_000B_01CA8F6E.FDAEDB30" X-Priority: 3 X-MSMail-Priority: Normal X-Mailer: Microsoft Outlook Express 6.00.2900.5843 X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.5579 X-Antivirus: avast! (VPS 100106-1, 01/06/2010), Outbound message X-Antivirus-Status: Clean This is a multi-part message in MIME format. ------=_NextPart_000_000B_01CA8F6E.FDAEDB30 Content-Type: multipart/alternative; boundary="----=_NextPart_001_000C_01CA8F6E.FDAEDB30" ------=_NextPart_001_000C_01CA8F6E.FDAEDB30 Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable Ed, Taking your idea of looking at BTU of fuel further, I'm wondering if we = shouldn't be removing from the calculations, the loss of BTU through the = exhaust and heat transfer from the engine to the air in the cowl. Looks = like 20% of energy going by the exhaust valve, some of which is removed = by the oil, but still a fair bit going out the exhaust. What's your take on that idea. Perhaps it something that could be looked = at in the take-off and climb figures, to compare to cruise figures, in = an endeavour to get a balanced view of overall need. George ( down under) Ok, George, you got it. I just want to emphasize that converting the = HP of your engine to its equivalent to BTU of heat energy really does = not tell you how much WASTE heat you need to get rid of - at least not = directly. You can generally assume if you are producing more HP you = will also have more waste heat to get rid of. But if you want to = really get a handle on how much, then you have to figure how much of the = total energy in the gasoline is going to work, exhaust and cooling uses = of that energy. =20 Ed =20 Ed Anderson Rv-6A N494BW Rotary Powered Matthews, NC eanderson@carolina.rr.com http://www.andersonee.com http://www.dmack.net/mazda/index.html http://www.flyrotary.com/ http://members.cox.net/rogersda/rotary/configs.htm#N494BW http://www.rotaryaviation.com/Rotorhead%20Truth.htm -------------------------------------------------------------------------= ----- From: Rotary motors in aircraft [mailto:flyrotary@lancaironline.net] = On Behalf Of George Lendich Sent: Wednesday, January 06, 2010 4:27 AM To: Rotary motors in aircraft Subject: [FlyRotary] Re: Waste Heat was [Fly Rotary] Re: Air Flow = Question =20 Ed, That's an interesting, and obviously valid approach, didn't think of = 'the old BTU's in fuel used approach' -that goes in my notes as well. Nothing much is wasted on me, provided I can understand it, of course. I like the way you think Ed, I realized where the 18 knots came from - = silly me, 10% of cruise.=20 =20 I am currently rehashing my figures, like you Ed, I like to validate = the proximity of need using the maths, at least it gives a valid = starting point and a core understanding. =20 George (down under) =20 Hi George, =20 Like many results of using equations - what you get out depends on = what you put in {:>). =20 1st there is 42.41 BTU/min per HP. So 42.41 *270 =3D 11450.7 = BTU/Min - as you calculated - BUT (big but) that is the heat energy = needed to produce 270 HP - that is NOT the waste heat energy you need to = get rid of. The amount you calculated is basically the heat energy to = produce 270 HP of mechanical work (turning the prop). What you want to = figure out is how much "waste" heat you need to get rid of (that is - = the heat energy not used to rotate the prop). That waste heat is the = heat that has not/can not be used to produce mechanical work. Waste = heat is generally gotten rid of two ways - out the exhaust stack and = through convection (coolant and oil) system in our engines. So you are = primarily interested in how much heat you must get rid of by convection = (coolant and oil) systems. =20 =20 Here is my method and how I got the 8288 BTU/min . Again, your = calculation does gives you the amount of heat energy in BTU that = produces 270 HP - that heat has been used doing work by your engine, = however, that is NOT the heat you are getting rid of through your = coolers -. For cooling purposes, you want to find the BTUs of heat = energy you need to get rid of that is NOT producing power - or in other = words - the waste heat (I think I repeated myself).=20 =20 Again, the HP of work your engine is producing is NOT the heat = energy that you have to get rid of through your two cooling systems = (radiators and oil coolers) (oops repeated myself again - but the = distinction is crucial!)=20 =20 Here is how I arrived at my figures for the waste heat. There is = more than one way to do this for sure and the results depends a lot on = your heat allocation (more on that in a bit). =20 Using a air/flow and air density and a formula for a 3 rotor, I = calculated that at a 12.65:1 air/fuel ratio (best power - so not cruise = {:>)) that you would burn around 25.2 GPH at 270 HP. =20 Using the old and simply (but good) approx power formula, I = calculate HP =3D 25.2 * 6 /0.55 =3D 274.9 HP which is pretty close to = the results (270 HP) of my more complex calculation=20 =20 which is based on engine air/flow and fuel mass consumed at that = ratio. So 25.2 GPH is a pretty valid figure for our fuel consumption at = that power. =20 =20 However, I calculate engine HP from a different approach (got to = make it more complex, you know {:>)). My approach is based on the = total number of BTU in the amount of fuel=20 =20 ingested by the engine to meet the power requirement (270 HP) with = following heat energy allocation: If your percentage of energy = allocation is different, then you will get a different results: =20 24% =3D HP (useful mechanical work) - some folks may think this is = too conservative, but I tend to be that way when calculating HP. 50%=3D out the Exhaust 26% =3D Cooling Waste (coolant + oil) =20 =20 We know coolant =3D 2/3 of 26% Cooling Waste and the oil =3D 1/3. =20 =20 There is approx 19000-20000 BTU/lbm in gasoline (I use 19000 = BTU/pound to be a bit conservative - besides 100LL has less energy than = 87 Mogas {:>) =20 So with 25.2 GPH * 6 lbm/gallon =3D 151 lbm/hour/60 =3D 2.52 = lbm/min of gasoline is being burned to produce the energy so out engine = produces 270 HP. =20 So 2.52 *19000 BTU/Lbm =3D 47880 BTU/min total energy of the fuel = consumed per minute at the 25.2 GPH rate. This total includes the work = energy (HP) and the waste energy. =20 So to find out the heat used to produce work 24% *47880 BTU/min =3D = 11491.2 BTU/min - Now that is not much different from what you got = 11450.7 BTU/Min. But, as I stated this is=20 =20 NOT the waste heat you need to reject.=20 =20 =20 So Allocation of heat energy we need to get rid of through the = cooling system, we have =20 26% =3D cooling waste =3D 0.26 * 47880 =3D 12448.8 BTU/Min of = which 2/3 is rejected through radiator , therefore=20 =20 0.6666 * 12448.8 =3D 8298 BTU/Min of waste heat through the = radiators. (does not include waste heat through the oil which is = 12448.8 - 8298 =3D 4150.8 BTU/min). =20 So altogether the radiator and oil cooler has to get rid of around = 12500 BTU/min at that power level - so you can see that if you do not = have adequate cooling at 270 HP power production you are going to fry = your engine fairly quickly. =20 =20 This is how it appears to me, George. Hope it helps. =20 =20 =20 Ed =20 =20 =20 Ed Anderson Rv-6A N494BW Rotary Powered Matthews, NC eanderson@carolina.rr.com http://www.andersonee.com http://www.dmack.net/mazda/index.html http://www.flyrotary.com/ http://members.cox.net/rogersda/rotary/configs.htm#N494BW http://www.rotaryaviation.com/Rotorhead%20Truth.htm -------------------------------------------------------------------------= --- From: Rotary motors in aircraft [mailto:flyrotary@lancaironline.net] = On Behalf Of George Lendich Sent: Tuesday, January 05, 2010 6:01 PM To: Rotary motors in aircraft Subject: [FlyRotary] Re: Air Flow Question =20 Ed, I have been terribly busy, but wanted to follow this thread and = finally got around to it, but can't understand where you got 8288 = BTU/min. =20 =20 If 1hp =3D 2545BTU/hr /60 =3D42.41BTU/min x 270hp=3D1145.7 btu/min = of which we are needing only 2/3 of water cooling, as 1/3 is done by the = oil . Therefore 2/3 of 1145.7=3D7633.8 btu/min. Did I go wrong somewhere = ? =20 Also I didn't know we were looking for 18knots as optimum air speed = flow through the rad. I did a quick copy of your calculations and got 28 = knots for 125 hp, so I will have to redefine my cooling set-up. =20 Ed, I like the maths approach. Is Tracy following this line of = thought i.e. calculating for cooling, as an Engineer I assumed he would = be doing something following this line of approach? George ( down under) Thomas, it doesn't work quite that way. Old Bernoulli's law is = (simplified by removing density) is A1V1 =3D A2V2 meaning the product of = the area and velocity anywhere in your duct is equal. Something to do = with conservation of mass (can't created/destroy it). So it based on = area expansion rather than volume. =20 =20 So to determine (more or less) the air velocity you need to know = the velocity of the air entering your duct (and the inlet area) and the = area down stream that you are expanding. However, determining the = velocity of air entering your duct may not be as simple as it first = seems due to a condition known as external diffusion. This is the air = streaming being slowed down in front of the inlet due to a pressure = gradient extending out of your duct opening (you can sort of think of it = as air molecules piling up before your core and increasing the pressure = back out your duct). =20 Where to Start? Either find an installation very similar to yours = that is cooling adequate and copy that OR you can do some figuring on = the back of an envelope. =20 You gotta start somewhere and Mr. Horner indicated that you need = to have the airflow through your core either 10% of your cruise speed or = 30% of your climb speed. =20 =20 So if your cruise speed is 180 knots then you would want the = airflow through your core to be ideally around 18knots. =20 Just as an example (disregarding external diffusion) lets say your = inlet opening A1 was 20 x2 =3D 40 sq inches =3D 40/144 =3D 0.277 sq ft = then if you want 18.4 knots the area in the duct at A2 then you solve = for A2 =20 A1V1 =3D A2V2 so solving for A2 =3D A1V1/V2 =3D 0.277 * 180/18 =3D = 2.777 sq ft or 2.777 * 144 =3D 400 square inches or an appox 10:1 = difference between opening and expanded area. =20 However, another couple of wizards (Kuchumman and Weber) indicated = that for good diffusion, your ratio of inlet area to area before your = core should be between 0.25 and 0.40 - going beyond that you start to go = bad. =20 So lets say you need 400 sq inches to accommodate your radiator = core, then according to K&W your inlet would need to be between 0.25 and = 0.40 X 400 =3D 100 - 160 sq inches The larger inlet would also tend to = diminish the external diffusion effect but not slow the air velocity as = much as the smaller opening.. =20 =20 However we still have A1V1 =3D A2V2 so with A1 at 100 sq inch = (0.694 sq ft) and assuming inlet air velocity is 180 knots and now = having A2 fixed at 400 sq inch or 2.777 sq ft we have V2 =3D A1V1/A2 =3D = 0.694 * 180/2.777 =3D 45 kts. =20 So our air velocity at the core is a bit higher than we would like = (according to Horner) so while it will cool, we may be encountering more = cooling drag due to the higher velocity air through the core than we = would like. =20 But, this is just a back of the envelope calculation. So many = things can affect cooling, we should be so lucky that it would be just = one major thing.=20 =20 Where I would Start: =20 I personally think the place to start is to 1st size your radiator = core based on the heat you want to get rid of in your worst case = situation (probably take off/climb). Since few of us have wind tunnels, = starting with a rule of thumb for core volume to HP would probably be a = good place to start. =20 Then looking at your space constraints to determine your radiator = size. I would not go much thicker than 3" . NASCAR car radiators are = typically around 3" in thickness with some going up to 7" thick for the = higher speed long tracks at speeds comparable to ours. Also whatever = the radiator builders have sort of mandates what you use. =20 So I think you mentioned a rule of thumb of 1.8 cubic inch of = core/HP ( I personally feel this may be a little on the low side). = Assuming 270 HP max engine power then that would indicate a core volume = of approx 1.8 * 270 =3D 486 cubic inches (lets round it up to an "even" = 500 cubic inches). Assuming you find a core 3" thick then its front = area would need to be 500/3 =3D 166.6 sq inches. So that could be 16 = wide and 10" high or 27.7 inches wide by 6" high or what ever = combination - again likely constrained by what the manufactures build. =20 But let's say you chose 16 x10 x3 radiator. The next thing you = need to know is how much airflow you must have through it to dissipate = the heat (coolant only in this example). For a three rotor producing = 270 hp the coolant needs to get rid of approx 8288 BTU/Minute. = Assuming we can add heat to the cooling air increasing its temperature = by 80F (might get 100), Then the air mass required can be found from Q (BTU) =3D = M(mass)*Dt*Cp rearranging the formula =20 M =3D Q/ Dt*Cp =3D 8288/(80*0.25) =3D 414.4 lbm/min of air. One = Cubic foot of air at sea level =3D 0.0765 lbm So air flow in CFM =3D 414.4/0.0765 =3D 5416 CFM of cooling air. = We need to pass that through the frontal area of our core (166.6 sq = inches /144 =3D 1.1569 sq ft). 5416 / 1.1569 =3D 4681 ft/min of air = velocity or dividing by 60 =3D 78.01 ft/sec =3D 46 knots air velocity = through your core (166.6 sq inch). Not quite the 18 kts Horner wanted = but at least a start. So what does this tell us. That if we want to = get by with the ideal (slower) airflow through the core (18 kts) then = our core frontal area needs to be larger than 166 sq inches. =20 =20 Back to A1V1 =3D A2V2 if we need 46 knots through 1.1569 sq ft of = core frontal area and V1 (assuming no external diffusion) =3D 180 kts = then the inlet A1 =3D 46 * 1.569/180 =3D 0.4 sq ft inlet =3D 0.4 * 144 = =3D 57.7 sq inch inlet opening. Now remember this is all looking at = cooling a cruise - where things are best. Conditions during take off = and climbout are going to be worst case. So you need to do all of this = for those airspeeds as well =20 Note there are a whole bunch of assumptions made to simplify = things which may not hold true in all cases. The first major one is the rule of thumb 1.8 cubic inch /Hp. IF = your core is fabricated similar to the core from which this rule of = thumb was drawn then you are probably OK. But, if substantive different = then this rule of thumb may not be valid and then your basic assumption = is flawed and need I add all following that is now garbage. =20 The alternative to all of this stuff - is to find an installation = as close as possible to yours that is cooling adequately and use that as = you cooling system design basis. =20 Sorry - got carried away. =20 Ed =20 Ed Anderson Rv-6A N494BW Rotary Powered Matthews, NC eanderson@carolina.rr.com http://www.andersonee.com http://www.dmack.net/mazda/index.html http://www.flyrotary.com/ http://members.cox.net/rogersda/rotary/configs.htm#N494BW http://www.rotaryaviation.com/Rotorhead%20Truth.htm -------------------------------------------------------------------------= - From: Rotary motors in aircraft = [mailto:flyrotary@lancaironline.net] On Behalf Of Thomas Mann Sent: Monday, December 21, 2009 2:04 PM To: Rotary motors in aircraft Subject: [FlyRotary] Air Flow Question =20 If I have a volume of air entering my scoop at 180 kts and = expand the volume of the chamber by 400% can I expect the speed of the = airflow to drop to 45 kts at that point? =20 T Mann __________ Information from ESET NOD32 Antivirus, version of virus = signature database 3267 (20080714) __________ The message was checked by ESET NOD32 Antivirus. http://www.eset.com __________ Information from ESET NOD32 Antivirus, version of virus = signature database 3267 (20080714) __________ The message was checked by ESET NOD32 Antivirus. http://www.eset.com ------=_NextPart_001_000C_01CA8F6E.FDAEDB30 Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable
Ed,
Taking your idea of looking at BTU of=20 fuel further, I'm wondering if we shouldn't be removing from = the=20 calculations, the loss of BTU through the exhaust and heat transfer = from=20 the engine to the air in the cowl. Looks like 20% of energy going by the = exhaust=20 valve, some of which is removed by the oil, but still a fair bit going = out the=20 exhaust.
What's your take on that idea. Perhaps = it something=20 that could be looked at in the take-off and climb figures, to compare to = cruise=20 figures, in an endeavour to get a balanced view of overall = need.
George ( down under)
 

Ok, George, = you got=20 it.  I just want to emphasize that  converting the HP of = your engine=20 to its equivalent to BTU of heat energy really does not tell you how = much=20 WASTE heat you need to get rid of =96 at least not directly.  You = can=20 generally assume if you are producing more HP you will also have more = waste=20 heat to get rid of.   But if you want to really get a handle = on how=20 much, then you have to figure how much of the total energy in the = gasoline is=20 going to work, exhaust and cooling uses of that=20 energy.

 

Ed

 

Ed=20 Anderson

Rv-6A = N494BW Rotary=20 Powered

Matthews,=20 NC

eanderson@carolina.rr.com

http://www.andersonee.com

http://www.dmack.net/mazda/index.html

http://www.flyrotary.com/

http://members.cox.net/rogersda/rotary/configs.htm#N494BW

http://www.r= otaryaviation.com/Rotorhead%20Truth.htm


From:=20 Rotary motors in aircraft = [mailto:flyrotary@lancaironline.net] On=20 Behalf Of George Lendich
Sent:
Wednesday, January 06, = 2010 4:27=20 AM
To: = Rotary motors in aircraft
Subject: [FlyRotary] Re: Waste = Heat was=20 [Fly Rotary] Re: Air Flow Question

 

Ed,

That's an interesting, = and=20 obviously valid approach, didn't think of 'the old BTU's in fuel used=20 approach' -that goes in my notes as = well.

Nothing much is wasted = on me,=20 provided I can understand it, of = course.

I like the way you think = Ed, I=20 realized where the 18 knots came from - silly me, 10% of=20 cruise. 

 

I am currently rehashing = my=20 figures, like you Ed, I like to validate the proximity of need using = the=20 maths, at least it gives a valid starting point and a core=20 understanding.

 

George (down=20 under)

 

Hi=20 George,

 

Like many = results=20 of using equations =96 what you get out depends on what you put in=20 {:>).

 

1st=20 there is 42.41 BTU/min per HP.  So 42.41 *270 =3D 11450.7 = BTU/Min - as=20 you calculated  =96 BUT=20 (big but) that is the heat energy needed to produce 270 HP =96 that = is=20 NOT the waste heat energy you need to = get rid=20 of.   The  amount you calculated is basically the = heat energy=20 to produce 270 HP of mechanical work (turning the prop).  What = you want=20 to figure out is how much =93waste=94 heat you need to get = rid of=20 (that is - the heat energy  not used to rotate the = prop).=20   That waste heat is=20 the heat that has not/can = not=20 be used to produce mechanical work.  Waste heat is generally = gotten rid=20 of two ways =96 out the exhaust stack and through convection = (coolant and oil)=20 system in our engines.  So you are primarily interested in how = much=20 heat you must get rid of by convection (coolant and oil)=20 systems.

 

 

Here is = my method=20 and how I got the 8288 BTU/min .  Again,  your calculation = does=20 gives you the amount of heat energy in  BTU that produces 270 = HP - that=20 heat has been used doing work by your engine,  however, that is = NOT  the heat = you are=20 getting rid of through your coolers =96.   For cooling = purposes, you=20 want to find the BTUs of heat energy you need to get rid of that is = NOT=20 producing power  - or in other words - the waste heat (I think = I=20 repeated myself).

 

Again,=20   the HP of work your engine is producing is NOT the heat energy that you = have to=20 get rid of through your two cooling systems (radiators and oil = coolers)=20 (oops repeated myself again =96 but the distinction is crucial!)=20

 

Here is = how I=20 arrived at my figures for the waste=20 heat.  There is more than one way to do this for = sure and=20 the results depends a lot on your heat allocation (more on that in a = bit).

 

Using a = air/flow=20 and air density and a formula for a 3 rotor,  I calculated that = at a=20 12.65:1 air/fuel ratio (best power =96 so not cruise {:>)) that = you would=20 burn around 25.2 GPH at 270 HP.

 

Using the = old and=20 simply (but good)  approx power formula, I calculate HP =3D = 25.2 * 6=20 /0.55 =3D  274.9 HP which is pretty close to the results (270 = HP) of my=20 more complex calculation

 

which is = based on=20 engine air/flow and fuel mass consumed at that ratio. So 25.2 GPH is = a=20 pretty valid figure for our fuel consumption at that=20 power.

 

 

However, =  I=20 calculate engine HP from a different approach (got to make it more = complex,=20 you know  {:>)).  My approach is   based on = the total=20  number of BTU in the amount of fuel =

 

ingested = by the=20 engine to meet the power requirement (270 HP)  with following = heat=20 energy allocation:  If your percentage of energy allocation is=20 different, then you will get a different=20 results:

 

24% =3D = HP (useful=20 mechanical work) =96 some folks may think this is too conservative, = but I tend=20 to be that way when calculating HP.

50%=3D = out the=20 Exhaust

26% =3D = Cooling Waste=20 (coolant + oil)

 

 

We know = coolant =3D=20 2/3 of  26% Cooling Waste and the oil =3D=20 1/3.

 

 

There is = approx=20 19000-20000 BTU/lbm in gasoline (I use 19000 BTU/pound  to be a = bit=20 conservative =96 besides 100LL has less energy than 87 Mogas=20 {:>)

 

So with = 25.2 GPH *=20 6 lbm/gallon  =3D 151 lbm/hour/60 =3D 2.52 lbm/min of gasoline =  is=20 being burned to produce the energy so out engine produces 270=20 HP.

 

So 2.52 = *19000=20 BTU/Lbm  =3D  47880 BTU/min total=20 energy of the fuel consumed per minute at the 25.2 GPH=20 rate.  This total includes the work energy (HP)  and the = waste=20 energy.

 

So to = find out the=20 heat used to produce work 24% *47880 BTU/min =3D  11491.2 = BTU/min =96 Now=20 that is not much different from what you got 11450.7 BTU/Min.  = But, as=20 I stated this is

 

NOT the = waste heat you=20 need to reject.

 

 

So = Allocation of=20 heat energy we need to get rid of through the cooling system, we=20 have

 

26% =3D = cooling waste=20 =3D 0.26 * 47880 =3D  12448.8 BTU/Min  of which 2/3 is = rejected=20 through radiator , therefore

 

0.6666 * = 12448.8 =3D=20 8298 BTU/Min of waste = heat=20 through the radiators.  (does not include waste heat through = the oil=20 which is 12448.8 =96 8298 =3D 4150.8 = BTU/min).

 

So = altogether the=20 radiator and oil cooler has to get rid of around 12500 BTU/min at = that power=20 level =96 so you can see that if you do not have adequate cooling at = 270 HP=20 power production you are going to fry  your engine fairly=20 quickly. 

 

This is = how it=20 appears to me, George.  Hope it = helps.

 

 

 

Ed

 

 

 

Ed=20 Anderson

Rv-6A = N494BW Rotary=20 Powered

Matthews, = NC

eanderson@carolina.rr.com

http://www.andersonee.com

http://www.dmack.net/mazda/index.html

http://www.flyrotary.com/

http://members.cox.net/rogersda/rotary/configs.htm#N494BW

http://www.r= otaryaviation.com/Rotorhead%20Truth.htm


From:=20 Rotary motors in = aircraft=20 [mailto:flyrotary@lancaironline.net] On=20 Behalf Of George Lendich
Sent:
Tuesday, January 05, = 2010 6:01=20 PM
To: = Rotary motors in aircraft
Subject: [FlyRotary] Re: Air = Flow=20 Question

 

Ed,

I have been terribly = busy, but=20 wanted to follow this thread and finally got around to it, but can't = understand where you got 8288 BTU/min. =20

 

If 1hp =3D 2545BTU/hr = /60=20 =3D42.41BTU/min x 270hp=3D1145.7 btu/min of which we are needing = only 2/3 of=20 water cooling, as 1/3 is done by the oil . Therefore 2/3 of=20 1145.7=3D7633.8 btu/min. Did I go wrong somewhere=20 ?

 

Also I didn't know we = were=20 looking for 18knots as optimum air speed flow through the rad. I did = a quick=20 copy of your calculations and got 28 knots for 125 hp, so I = will have=20 to redefine my cooling set-up.

 

Ed, I like the maths = approach.=20 Is Tracy=20 following this line of thought i.e. calculating for cooling, as = an=20 Engineer I assumed he would be doing something following this = line of=20 approach?

George ( down=20 under)

Thomas, = it=20 doesn=92t work quite that way.  Old Bernoulli=92s law is = (simplified by=20 removing density) is A1V1 =3D A2V2 meaning the product of the area and = velocity=20 anywhere in your duct is equal.  Something to do with = conservation of=20 mass (can=92t created/destroy it). So it based on area expansion = rather than=20 volume. 

 

So to = determine=20 (more or less) the air velocity you need to know the velocity of = the air=20 entering your duct (and the inlet area) and the area down stream = that you=20 are expanding.  However, determining the velocity of air = entering=20 your duct may not be as simple as it first seems due to a = condition known=20 as external diffusion.  This is the air streaming being = slowed down=20 in front of the inlet  due to a pressure gradient extending = out of=20 your duct opening (you can sort of think of it as air molecules = piling up=20 before your core and increasing the pressure back out your=20 duct).

 

Where=20 to Start?  = Either=20 find an installation very similar to yours that is cooling = adequate and=20 copy that OR you can do some figuring on the back of an=20 envelope.

 

You = gotta start=20 somewhere and Mr. Horner indicated that you need to have the = airflow=20 through your core either 10% of your cruise speed or 30% of your = climb=20 speed. 

 

So if = your cruise=20 speed is 180 knots then you would want the airflow through your = core to be=20 ideally around 18knots.

 

Just as = an=20 example (disregarding external diffusion) lets say your inlet = opening A1=20  was 20 x2 =3D 40 sq inches =3D 40/144 =3D  0.277 sq ft = then if you=20 want 18.4 knots the area in the duct at A2 then you solve for=20 A2

 

A1V1 = =3D A2V2 so=20 solving for A2 =3D A1V1/V2 =3D 0.277 * 180/18 =3D 2.777 sq ft or = 2.777 * 144 =3D=20 400 square inches or an appox 10:1 difference between opening and = expanded=20 area.

 

However, another=20 couple of wizards (Kuchumman and Weber) indicated that for good = diffusion,=20 your ratio of inlet area to area before your core should be = between 0.25=20 and 0.40 - going beyond that you start to go=20 bad.

 

So lets = say you=20 need 400 sq inches to accommodate your radiator core, then = according to=20 K&W your inlet would need to be between 0.25 and 0.40 X = 400  =3D=20 100 =96 160 sq inches  The larger inlet would also tend to = diminish the=20 external diffusion effect but not slow the air velocity as much as = the=20 smaller opening.. 

 

However = we still=20 have A1V1 =3D A2V2  so with A1 at 100 sq inch (0.694 sq ft) = and=20 assuming inlet air velocity is 180 knots and now having A2 fixed = at 400 sq=20 inch or 2.777 sq ft we have V2 =3D A1V1/A2 =3D 0.694 * 180/2.777 = =3D 45=20 kts.

 

So our = air=20 velocity at the core is a bit higher than we would like (according = to=20 Horner) so while it will cool, we may be encountering more cooling = drag=20 due to the higher velocity air through the core than we would=20 like.

 

But, = this is just=20 a back of the envelope calculation.  So many things can = affect=20 cooling, we should be so lucky that it would be just one major = thing.=20

 

Where=20 I would Start:

 

I = personally=20 think the place to start is to 1st size your radiator = core=20 based on the heat you want to get rid of in  your worst case=20 situation (probably take off/climb).  Since few of us have = wind=20 tunnels, starting with a rule of thumb for core volume to HP would = probably be a good place to start.

 

Then = looking at=20 your space constraints to determine your radiator size.  I = would not=20 go much thicker than 3=94 .  NASCAR car radiators are = typically around=20 3=94 in thickness with some going up to 7=94 thick for the higher = speed long=20 tracks at speeds comparable to ours.  Also whatever the = radiator=20 builders have sort of mandates what you = use.

 

So I = think you=20 mentioned a rule of thumb of 1.8 cubic inch of core/HP ( I = personally feel=20 this may be a little on the low side).  Assuming 270 HP max = engine=20 power then that would indicate a core volume of approx 1.8 * 270 = =3D=20  486 cubic inches (lets round it up to an =93even=94 500 = cubic=20 inches).  Assuming you find a core 3=94 thick then its front = area would=20 need to be 500/3 =3D 166.6 sq inches.  So that could be 16 = wide and 10=94=20 high or  27.7 inches wide by 6=94 high or what ever = combination =96 again=20 likely constrained by what the manufactures=20 build.

 

But = let=92s say you=20 chose 16 x10 x3 radiator.  The next thing you need to know is = how=20 much airflow you must have through it to dissipate the heat = (coolant only=20 in this example).  For a three rotor producing 270 hp the = coolant=20 needs to get rid of approx 8288 = BTU/Minute.  =20 Assuming we can add heat to the cooling air increasing its = temperature by=20 80F (might get 100),

Then the air mass = required can=20 be found from Q (BTU) =3D M(mass)*Dt*Cp=20 rearranging the formula

 

M =3D = Q/=20 Dt*Cp =3D=20 8288/(80*0.25) =3D 414.4 lbm/min of air.  One Cubic foot of = air at sea=20 level =3D 0.0765 lbm

So air flow in CFM = =3D=20 414.4/0.0765 =3D  5416 CFM of cooling air.  We need to = pass that=20 through the frontal area of our core (166.6 sq inches /144 =3D = 1.1569 sq=20 ft).   5416 / 1.1569 =3D 4681 ft/min of air velocity or = dividing=20 by 60 =3D 78.01 ft/sec =3D 46 knots air velocity through your core = (166.6 sq=20 inch).  Not quite the 18 kts Horner wanted but at least a=20 start.  So what does this tell us.  That if we want to = get by=20 with the ideal (slower)  airflow through the core (18 kts) = then our=20 core frontal area needs to be larger than 166 sq inches. =20

 

Back to A1V1 =3D = A2V2 if we need=20 46 knots through 1.1569 sq ft of core frontal area and V1 = (assuming no=20 external diffusion) =3D 180 kts then the inlet A1 =3D 46 * = 1.569/180 =3D 0.4 sq=20 ft inlet =3D 0.4 * 144 =3D 57.7 sq inch inlet opening.  Now = remember this=20 is all looking at cooling a cruise =96 where things are = best.  =20 Conditions during take off and climbout are going to be worst = case. =20 So you need to do all of this for those airspeeds as=20 well

 

Note there are a = whole bunch=20 of assumptions made to simplify things which may not hold true in = all=20 cases.

The first major one = is the=20 rule of thumb 1.8 cubic inch /Hp.  IF your core is fabricated = similar=20 to the core from which this rule of thumb was drawn then you are = probably=20 OK.  But, if substantive different then this rule of thumb = may not be=20 valid and then your basic assumption is flawed and need I add all=20 following that   is now = garbage.

 

The alternative to = all of this=20 stuff =96 is to find an installation as close as possible to yours = that is=20 cooling adequately and use that as you cooling system design=20 basis.

 

Sorry =96 got = carried=20 away.

 

Ed

 

Ed=20 Anderson

Rv-6A = N494BW=20 Rotary Powered

Matthews,=20 NC

eanderson@carolina.rr.com

http://www.andersonee.com

http://www.dmack.net/mazda/index.html

http://www.flyrotary.com/

http://members.cox.net/rogersda/rotary/configs.htm#N494BW

http://www.r= otaryaviation.com/Rotorhead%20Truth.htm


From:=20 Rotary motors in = aircraft=20 [mailto:flyrotary@lancaironline.net] On=20 Behalf Of Thomas Mann
Sent:
Monday, December 21, = 2009 2:04=20 PM
To: = Rotary motors in aircraft
Subject: [FlyRotary] Air = Flow=20 Question

 

If I have=20 a volume of air entering my scoop at 180 kts and expand the = volume of=20 the chamber by 400% can I expect the speed of the airflow to = drop to 45=20 kts at that point?

 

T=20 Mann



__________ Information from ESET = NOD32=20 Antivirus, version of virus signature database 3267 (20080714)=20 __________

The message was checked by ESET NOD32=20 Antivirus.

http://www.eset.com



__________ Information from ESET = NOD32=20 Antivirus, version of virus signature database 3267 (20080714)=20 __________

The message was checked by ESET NOD32 = Antivirus.

http://www.eset.com

------=_NextPart_001_000C_01CA8F6E.FDAEDB30-- ------=_NextPart_000_000B_01CA8F6E.FDAEDB30 Content-Type: image/jpeg; name="Engine Efficiency.JPG" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="Engine Efficiency.JPG" /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGkA+gDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDzr/hU +u/8/em/9/H/APiKP+FT67/z96b/AN/H/wDiK9jorHnZpyo8c/4VPrv/AD96b/38f/4ij/hU+u/8 /em/9/H/APiK9joo52HKjxz/AIVRrv8Az96d/wB/H/8AiKP+FT67/wA/em/9/H/+Ir2PIpM0c7Fy o8c/4VRrv/P3p3/fx/8A4ij/AIVRrv8Az96d/wB/H/8AiK9io7Zo52HKjx3/AIVRrv8Az96d/wB/ H/8AiKP+FU67/wA/enf9/H/+Ir2KkxRzsOVHj3/CqNd/5+9O/wC/j/8AxFH/AAqjXf8An707/v4/ /wARXsOaM0c7DlR49/wqjXf+fvTv+/j/APxFH/CqNd/5+9O/7+P/APEV7FRRzsOVHjv/AAqjXf8A n707/v4//wARR/wqnXf+fvTv+/j/APxFewFh0oo52HKjx/8A4VTrv/P3p3/fx/8A4ij/AIVTrv8A z96d/wB/H/8AiK9goo52HKjx/wD4VTrv/P3p3/fx/wD4ij/hVOu/8/enf9/H/wDiK9goo52HKjx/ /hVOu/8AP3p3/fx//iKP+FU67j/j707/AL+P/wDEV7BR39qOdhyo8e/4VVrn/P1p3/fx/wD4il/4 VTrv/P3p3/fx/wD4ivYMiijnYcqPH/8AhVOu/wDP3p3/AH8f/wCIo/4VTrv/AD96d/38f/4ivX9w o3CjnYcqPIP+FU67/wA/enf9/H/+Io/4VTrv/P3p3/fx/wD4ivYO1Jg0c7DlR4//AMKr1z/n707/ AL+P/wDEUv8AwqnXf+fvTv8Av4//AMRXr2OadRzsOVHj/wDwqnXf+fvTv+/j/wDxFH/Cqdd/5+9O /wC/j/8AxFewUmaOdhyo8g/4VTrv/P3p3/fx/wD4ij/hVOu/8/enf9/H/wDiK9goxRzsOVHj/wDw qnXf+fvTv+/j/wDxFH/Cqdd/5+9O/wC/j/8AxFewUUc7DlR4/wD8Kp13/n707/v4/wD8RR/wqnXf +fvTv+/j/wDxFewUUc7DlR4//wAKp13/AJ+9O/7+P/8AEUf8Kp13/n707/v4/wD8RXsFFHOw5UeP /wDCqdd/5+9O/wC/j/8AxFJ/wqrXP+frTv8Av4//AMRXsNHFHOw5UeP/APCqdd/5+9O/7+P/APEU f8Ko13/n707/AL+P/wDEV7Dilo52HKjx0fCjXT/y96d/38f/AOIo/wCFUa7/AM/enf8Afx//AIiv Yj7UUc7DlR47/wAKo13/AJ+9O/7+P/8AEUf8Ko13/n707/v4/wD8RXsVGKOdhyo8d/4VTrv/AD96 d/38f/4ij/hVGu/8/enf9/H/APiK9hxS4o52HKjx3/hVGu/8/enf9/H/APiKP+FUa7/z96d/38f/ AOIr2LNJnml7Rhyo8eHwo10/8venf9/H/wDiKP8AhVGu/wDP3p3/AH8f/wCIr2Ij0oxT52HKjx3/ AIVRrv8Az96d/wB/H/8AiKP+FUa7/wA/enf9/H/+Ir2HPOKWl7Rhyo8d/wCFUa7/AM/enf8Afx// AIij/hVGu/8AP3p3/fx//iK9io7Zp87DlR47/wAKo13/AJ+9O/7+P/8AEUf8Ko13/n707/v4/wD8 RXsOeKM8Uc8g5UePf8Ko13/n707/AL+P/wDEUf8ACqNd/wCfvTv+/j//ABFexUUc7DlR47/wqnXf +fvTv+/j/wDxFH/Cqdd/5+9O/wC/j/8AxFew4oxRzsOVHj3/AAqjXf8An707/v4//wARR/wqjXf+ fvTv+/j/APxFexYoo52HKjx3/hVGu/8AP3p3/fx//iKX/hVGu/8AP3p3/fx//iK9hoHNHOw5UePf 8Kn13/n703/v4/8A8RSf8Ko13/n707/v4/8A8RXslNo52PlR47/wqjXf+fvTv+/j/wDxFH/CqNd/ 5+9O/wC/j/8AxFexUoGaXtGHKjxz/hVGu/8AP3p3/fx//iKP+FUa7/z96d/38f8A+Ir2LFFHtGHK jx3/AIVRrv8Az96d/wB/H/8AiKF+FOut/wAvenf9/H/+Ir2KkCkGj2jDlR49/wAKo13/AJ+9O/7+ P/8AEUf8Ko13/n707/v4/wD8RXsVJmnzsXKePf8ACqNd/wCfvTv+/j//ABFH/CqNd/5+9O/7+P8A /EV7FSE8Gl7Rj5UePf8ACqNd/wCfvTv+/j//ABFH/Cqdd/5+9O/7+P8A/EV6+MilxR7Rhyo8f/4V Trv/AD96d/38f/4ij/hVGu/8/enf9/H/APiK9gpw5p87DlR47/wqjXf+fvTv+/j/APxFH/Cqdd/5 +9O/7+P/APEV7FTSOaOdhyo8f/4VTrv/AD96d/38f/4ij/hVGu/8/enf9/H/APiK9hoJ4o52HKjx 7/hVOu/8/enf9/H/APiKP+FUa7/z96d/38f/AOIr2AetG8e9HOxcqPH/APhVGu/8/enf9/H/APiK P+FU67/z96d/38f/AOIr2HNJijnYcp4//wAKp13/AJ+9O/7+P/8AEUf8Kp13/n707/v4/wD8RXsF GKOdhyo8d/4VXrn/AD9ad/38f/4inD4U66f+XvTv+/j/APxFev4pQMCjnYcqPH/+FU67/wA/enf9 /H/+Io/4VTrv/P3p3/fx/wD4ivYKKOdhyo8fHwp10/8AL3p3/fx//iKP+FU67/z96d/38f8A+Ir2 AcCijnYcp4//AMKp13/n707/AL+P/wDEUn/Cq9c/5+9O/wC/j/8AxFewnpTB1o52HKeRf8Kp13/n 707/AL+P/wDEUf8ACqdd/wCfvTv+/j//ABFewUdRRzsfKjx3/hVeuf8AP1p3/fx//iKd/wAKp13/ AJ+9O/7+P/8AEV6/ilo52HKjx/8A4VTrv/P3p3/fx/8A4ik/4VXrn/P3p3/fx/8A4ivYM9qTaaOd hyo8g/4VXrn/AD96d/38f/4ilHwp10/8venf9/H/APiK9e2mnDgUc8g5UeP/APCqdd/5+9O/7+P/ APEUf8Kp13/n707/AL+P/wDEV7BR2zRzsOVHj3/Cqtc/5+tO/wC/j/8AxFL/AMKp13/n707/AL+P /wDEV7BxRRzsOVHj/wDwqnXf+fvTv+/j/wDxFH/Cqdd/5+9O/wC/j/8AxFewUUc7DlR4/wD8Kp13 /n707/v4/wD8RR/wqnXf+fvTv+/j/wDxFewUUc7DlR4+PhTrp/5e9O/7+P8A/EUf8Kp13/n707/v 4/8A8RXsA4FFHOw5UeP/APCqdd/5+9O/7+P/APEUf8Kp13/n707/AL+P/wDEV7Diko52HKjx/wD4 VTrv/P3p3/fx/wD4ij/hVOu/8/enf9/H/wDiK9gope0Y+RHjF78NNZsLC4vJbmwMdvE0rBZHyQoJ OPl68UV6p4k/5FfV/wDrym/9ANFaQk3uRJJGtmlHNJilHFZGgUmeKWmN14oEGaAc0lHSmIcelHbF JmlPSkAhYCk3CkPNN6EUAPooo7UALmjPFNzS0ANI5zS7hS9qbtNAC7hQWApNpoKk0ALmlPSkx0pe 1ACbhRkUm00h4oAMDOadnim0YOM44oAKOlHSo2mj3Y3jPpSuMmJ4FGahNxFjHmLke9KJos/6xfXr TAmpNwqI3UPI3j86T7RCekqn8aAJsil4FQefF/z0X86cbiLafnU/jQBJnBzSEknjpURuYQAPNTPp mgTxH/lov50riJtwo3Co/NiAz5ifnUZu7cHmZB+NMCxuFG4VX+2W/wDz2T86ab22HHnJ+dIC1mjN Vhe22P8AXp+dH221HPnp+dFxlqiqo1K0/wCe6Z9M0jalZqObhB/wIUXEXc0mao/2pZDrcoPqaP7W sf8An5TPpmi4F/NJmqB1WyAz9oT86QazYH/l4WgDQzSZqidYsQQDcLk+9NbWrBes4osBo5ppb2NU P7bsOcTDI7Yph12xJyJ1I9R3osBpYOM0ZFZr6/ZAf63j6UxvEFkMjfk+gHWizA1sk0m72NZI8Q2I Hf8AKmt4gsx0DH/gJoswNjPI4NO3CsR/EVpGpZt2AM9D0pieJrWWISRo7Ie4Boswub2R/kUE54H8 qwx4hjxn7PLj6Gl/4SJM4EEvHXg8U7MDax2pCaxf+EgGT/o035Uv9utwRaTeoGOtFmBs56c9KcCD WC3iCT5dtnKQfQUHXJ+MWMv/AHzSswubxIHejPFc/Jr1wAWNjKAvLE9B9ah/t6/b5l0yXaenNOzC 50u7BoDAjPNcyNY1Nv8AmHSAe4obWtRgjYvYMuD0NHK0B0+RQT7VzR1bVyNw01sdfrSf2prLYI03 GPU07MLnS7qXcK5ifV9Xt4Wkls0UKOcmnQ6lrTorixXBGRz1FLlY7nSkgCk3d+1c/wDbdd+99hUg 9Bnmq19rmqWMKyS2afMwVFB5cnsBS5ZBc6kN37Uu4HnNc7Fea3PGkhtEQHnBJyP0qT7Tre4gWyYH fNPlYjdLijOOa5mTVNVW+Wz8hDORkqDnb9as+ZrpH+oTj/ao5WFze3ZFIDnpWEZdbyQYowB1Jaqd jqesagZGgiQxRtt83PDH2o5WO51JJFJu9qw2bXsH5YqguptYs4HmmaFVQc0rMR0W7joaQOPWsCGT XZoVkQR4YZGfSnBNfY/8s6fKwN/cPWmF+cVgl9ZWRIzJEHbovepGTWzgB0z9KLMdzcDZozWIItdH Vox+FQRzavJcSQxzRNIn3gO1HKwudDux1pSwBxWD5Ouv/wAtU/KmmDXFzK1zGEHqMUWYXOgzkcUg Iz3/ACNYBi14jiSMAj0pn2bXsH9/EP8AgNFmI6PcKAwPfiuT1GbW9Os2mmuUBXouOWPYD1qSytPE MwjlkuFUPhtpHQUWY7nU5yOKTNNiV1jUO25gMEmnbTQIXNJnBpDxQPegB24Ubh702lJGKBjs0maj 3U4HkUAPPQ0wHmn03FAxdwxQDxTTwKUcCgQu4UFgBmkA701zngUDFznBp2aYOwpehoAfRSZpaAEP Q0A8Ujn0oHSgBc0tMHWnFgBQAbhRuFNHNAIJxQIcWAoyPWmtQAPegY7I9aNwBpoAzQetAh+8e9Lu Wozx1owPWgY5vvDFOxSDpk0ucikBl+JP+RX1f/rym/8AQDRR4jH/ABS2r/8AXlN/6AaK1p7E1DXo oorMoTNMLDPen4ppGTQIbmlpcUYoEJSnpRiloAZmk6kU7ijigAoHpRR3oAOKKKMUAFFFFABmk3Cj HWkxQAE5PFLuFNooAduFMzubAoLDnnpVDUNWs9PjzLLlyOEXlj+FHkBedwiFjwOmT61iXXiKLzzb aehubgDHyj5VNUZbbUdakE16zWdjn5Yw3zN9fTNdHZWNtZW4S3hSNcctjlvqaaS6gYv9n6zf4N1d i3Vv4U60L4U4DG+uCT6tXR7ScNgAfSsjV9YNo0dtap517N/qkHOB6n0pqWtohYyp9Jsba6htze3D zyn5UDZOO5+laS+G4Dhjczjju1S6TpIss3N1mW+l+aSVuT9B6VqMFAYyEBR1yaLtaXCxiN4agUkt PLx1+as+wsLPUrqZbZpzaxHaZd3DN6D1q200viK5MFuzJpqHEsvTzCP4VrdgghtLdYYVCog+UAYx 60J21YWMw+HLUgDzJPb5qp39ppmmxr5k0heQ7Y0U5LE1p6rqsWmwqxUyyvxFCv3pDVTStIk84ajq bCS8kBKqeREvoPeiLbCw5fD1s6iQlwcDjdTxoVsq5YuPqTWvkD5m4FYuq6tMsw07TsSX7feOMiIH +I/zpXd7IBhsdO+2/YBI7T7dzKrZ2j3qY+HbP/aP1aptI0mHTLctktcSHdLM3Jc/4VotgKxYgADn NDk1oBkDQLIH7rgjr83SqNjbafqVxMttEzW0R2mUnhm9vWlknl8R3TW1o7JpyHE0y8eYR2U1vwW0 NrbpBCgWNB8uBjFNNrVgUBoNhjiNifTNVr+z0nTbNrm5XEa9s/ePoK0769g0+1e4uHAVeMDqT2Ar F0/T7rWbpdT1ZSIFP+i2x6AerD1pRbet9AsT6dplnfWa3LWrQrLnYG64q2vh/TsZ8kGtQcNtAHIH TtWXq2rJp0axw5e7lOIo1GSx7fhmhzfQDP1SPTdMhQx2/nXUp2wxjnce3FTadokS2kb3kCCZvmIA 6e1S6Vo728pv79xJfSdzyIgewFa4AOCAfXk0OTSAp/2PYAZMC4+lZmpCw01Y4oLVJbq4/wBSg53e /wBB3q7q2r/2eiQQr5t7N/qohz+J9BTNI0hrZzeXTGa/m5Zm6L7D0pK7VwGaVoqQWoa8iie4ly0g AyF9AKvHTbLPNunr92rmMHAGM9e9Yep6pPNP/ZulENeEHzJP4Yh7n1ppt6AVNTlhkuRpWmwR/bpB l3xkRL6k+talhotpZ2kcLRI7ryzleST1p+l6VDpdqFjO6Vjulkb7zn6+lXmIVC7kBRznPFDbWgFZ 7WzTOIoxt5JI6Vk2Nymq37fY7OMWcRw1wV++w7ConebxJcGGB2TS4ziWReDL6qPauhghSCFIolCI owqqMAUXfUBgtIM5EKZ/3RVPVb2x0q28x4leRjtjiUZZz2AFTalqUOmwB5AXkc7YoV+9IfQVR03T Jpbg6rqpV7x/9XH1WJfQe9Cb6gUbq2uI9D1C+1F1WaaNisKjiNcHp71qaD5L6FbsqoBt5yOPrTfE 0JudBu4xJsXaSWPpjkVznh6/v7XQoLK2XffzEld3Pkr/AHm/n3prVMLHRarqbQ3AsbGNHv5MEZHE Q/vGrWnWf2GwRJZDLMxLSuRyxpNN0yDT4i/LzyfNJM/3mPf8KuHA5PHGee1S30QCBVySV2gdT6Vg XV7cazeyabphMUMZ/wBKuB/Cf7qn3pby8uNdnaw0xylsDi5uU7+wrbtbWGyt1hhQRxqOg9e5J70L zAfHEsUKR8bUAG49T70rOsQZ5flVRuO44wPelkkWGNnchQo3ZPpXOok3iefedyaMhOwdDcMOv4UB YejzeJLhHj8yHSonyrdDcEHn8K6DACAKg6Yx9OlIirGoRAAoAAAGAB7Co7q6gs7WS4nkVYkHzEn9 KG+wWEuLyKzt3nmdUjQck+vpWHZW1zr91FqF35kWnxNmCDoXI/ib+lSWtpca5PHd6gjR2ic29uer D+839K3gNoCqAAOwo2AVmAGemOg7AVHcXMdpbvcXEgSOMbmJPam3V1HZ273MzBY05ye9YkFpJr1z HdXqulhGcwW7cbz/AHm/woGJbW82uXEd1dK0enxtuggJx5h/vNXRKvRVB4GAB/KhV25CgAYAAHaq eoalBp0G+Q7nY4ijX70h9BQ/IQzU9Ug0y38yXLljtjjXq59BVPTdOkubkatqWDO3+ri/hiXt+NGl 6dNNdjVNUO65YERxkfLGvbHvW3kbQxBAPr2FF7IBMFuuQP0xWZqerPbzx2Vmok1CYZRT0jA7t6Um qalJDKllZKsl/KPlXPEY/vN6VJpWlx6cjzM5ku5vmnlfkuf6AUkl1AXSdLTTYy7uZbqUkySuPmJP b6Vfd1UMWwAv3s8YpJHVAS5AAHJPauemmn8SXH2eFmTSlbE0g4MpHYe1MYks0niaRrW2LxaXGSJJ gcGQ9wPat63t1ghSGJVCKMKoGMU6GGOCJY0UIijCqowF/wAaS6nitYWlmcIi9c9/ahvsIbd3cVjb Nczuqxr3x19hWJa2k+tzRX1+hjso2zDbH+M9mb+lSW9pLrd19v1CNktEOLa3PT/eIrdJDD5R6AY7 UPRAMAGAiqDjgADGKo6rqsOmRIm0PPLxHEo5Y/4U3VtUi02EBAZLiXIjiXq5/wAKg0rSporg6hqB 82+YcZ5ESnsKErgLo2lSxzPqV7IZbycfhEv90CtgkZ4xxz0pd2eBWHqepyy3Q0rTGzdMP3knaIep PrTTvoA3UdVuZbn+zNMUNcsD5jkcRD1z61f0nTodLtfKj5J+aR3HLk9STS6ZpcGl2xjjy7sd0krf edvf2q5JKsMbyOyoqfeLdqTdtEA2WQQI8khCKgLMTxgVzqtP4pnLqZItKibAPQykeg9KTE3ie8/j j0iFvoZ2/wAK6aJEhiWOONVVRgBRjaPQChaIATCJtwAuAOnpVXUNSt9LtWubhggX+HHJPYD1zUl5 ewWNs887YVeMdyewHrWNYabNq0w1PVlwMn7Lbn7sY9T6mheYCafYz6rcx6vqS/uwD9ltmHEY9T71 0IbGeAfTjGKQrgEj0/lUbTIjqjMAzdAaG+wyXdk80HoaQU6gBgPrRmnYoxQA3NGadik46UANxSU/ bS4pWGMyaN1PK5FN8sY4oAQnOKXPFJjnFO20wAMOlKRRiloCw04FKo7mk6kUpoELxSE9qNwpvegY rDIpAcU7IoxkUCG96G5FH4ilAzQMB0pqqA2acVPajbzQAhPNFOK5pNvrQADrnNISM5zQQO1NwPeg BSwOOtOIUDNNxninbBxQAqkEGlHFIFAPFLSuBm+JD/xS+r4/58pv/QDRSeJP+RX1f/rym/8AQDRW tPYiZr0UUVmWFJijNBPagBKO9Lim9M0Ei4ophbtSgH1oAXFGKWjtQA2iilxTASk5paKQBRRSZzxQ AZpT0pvTrSlsIW6UAJjjqM+lRyypCjNIwVV6knFZup6/b2EgtlXz7pxxCnJNUoNHvdYuEn1iRvI6 paqcD6E00rq4XEm1e81S4a20iM7AdrXBGAPp71LDpljo0T39/L58w5Mj+voK1Z5rPS7PzG2xQoNo 2jGfb3NY9nZz6vcLqGoxlLdT/o0DdP8AeIp9LRAksLe41a5TUr0NFaqcwW/TcR0Zv8K3l5IOCFPG KRh1O3B4HHT8KyNX1VoHS0s1E17N/qwOij1Ppile+iAXWNYNqY7W1j8+8mB2KOQB6n6VJpelLYF7 qdjNfSjM0nT6ADtRpGlJp6vPI7S3s3MkrDn6D0FaRZUDF24XljQ7R0AR2EasxIVV5JzWBK0niKV4 IS0WnIdsko6zHuo9qR2m8Q3BjiLQ6ahw8o6ynuo9q6CKJLeNY4UCgAAYHSktNWAkMS28EcUSAKq7 VUDAFUdX1ePTIBhfMnk+WOFeS5/wp2p6mljCpQebPIdscK9XP+FV9K0mWOU6hqDeZfSn5cjIiX+6 KaV1dgN0nSpFm/tDUpBNesMgHpEv91a2scngD601vlA3A57msbVNWke6OnacA96wAZ+0IPc+460N 30QDdU1Wb7Ymmaaoku3GXc9IR6mrekaPFpNs2GaWeQ7pJX6sfr6U/SdLh0q1KoTJK53SSt95z9av SPtUkkACk3bQBGbGd/ygDk+lc7PPceJbp7W0cx6bGds868eb6qv9aJ5JvEs7W1sTFpqnE04ODMR/ CvtW/b28NpbrBBGFjQAKBxj1+tC01YC21vFZ2yQQIFjQYUAYx/jUd7fwafbPPM+AvGB1J7AetJf3 8Gm2zzzvhUIHHUk9APWsywsZtSuF1LUU2xp/x623ZB6n1NN66gNsLOfVpo9S1KMrEhP2W2PRB/eP qa3QfmJPU4+gpzHgk9Tjn0x2xTHxnB9KmTWwDLp5Y7VntwGmwdo7Z7Vn6RpD2sz3t7J59+/V+gjU /wAKisfUfFy6drV5ayxjZEgKj1NS3viKUWWnpbRCS6vTlVJ4UeuapJhc6kjAwVxnOe5NZ2r3ctnb f6NAZrmRgsa44Ge/0rAvPFU1hptyzov2qJ1VgTwM02Hxl58z+VGX8m3ZwSf4sZxRZhc3dK0k2LS3 l4/nX8+DLIemOwHpitbthRgdeOtc3/b8qy6WmwYuVLNzWLb+LNSm8RG2dAkZl2L7DPWizC51OsS3 3lrbacmJJeDMeiD1+oqbSdKt9JtjHEN7SfPLI33nb1Nc/rHid7PxNb2CHMageafc9qo+JfFF9p+s RQ2+DG0Qk4os9gud2cgnHSudkaTxFdy20RaHSom2ySDIaY91HtVaLX554NIGBsuz8x/HmneMNTuN G063+xOkRZ9uRwFpbBc6eCOOCFIY1CRqMBVGAoqrqmpR6Za+ayGSRjtihXrIx6D86zvC0l3cWLXN 1cF2l+7kdK3HgieZJGQFk4UkZ/Ghq24XMTStNlmnXVdU+a7b7iDpEOwFbmwE4B4rkvG+p6hYw2ws z5aE/M3c1mT69ft4MkuRORcLKqkjqBRZtBc7LVopJ9LuYYMF3jIGfcYFV/DmjJoulRxk+ZORmR+p Y+n0rkrG91H/AIRS81B7py+0BSaZYeKdQu7uGJNwdYW6jq2ODTSaC56Rnceo49KoarazX9t9nimE MbnEsinlh6VxPh7Ur9dWiS8uWbeWPzdCe2KZqGr33/CMTSC5ZXF2YyR6ZpcrC539lbW9harbWwCx R9h3PqTU5OF3BgP6V5pputXp0bVRLMRIkJZCTz04rqrm7I8IPKs2JfIyW79Kbi+oXL2oaeNTeGF5 cWqHc8St/rD/AIVqKqooRAAoAAAGAAPauA8D+ddXJurmeSQDIXceD9K78c0mmtwEHU4rFl043mrm 51GQfZ4SPIg4wT/eYe1bXrXnPiGWe48ZvbJLKYyoAVTgCiKuB6L5seMLjDDIAPpTXnijGXkCjdgE nrXA63e3mna3bLYszeXbEsqnI6Vi3l3dXekWczzyu73LKFB5561Ti2F0eoXEVpeRr5rK8cbBjzwD 2qxHPFLny3UnGOK4XUd9t4GkKOTO0q78Nz9Kh8LjULe9uY5SyMICyKxySccUuRhdHfGePeYywLDq uf0rPj0+3/tM6jdSrNMp2Qgn5Yx7e9ee6ddOuo2sHmym5nlbzsnqc8AVt2FheSeLI7Ke5drW2BnC E9Segp8rC6O9PI3Z9uaytS1NorlLCyUS30vQf8817sfp1p+oai0TiysUWS+kGQvaMf3j6Yp+mabH p0W9nM1zId00zfec/wBAKleYC6dpcenRSSMxlupjummb70h7fQCrjOiqxJxtHzE9velZ1CFpOFAz k9KwJTJ4il8qPMelxthnHHnnuo9u1G4AzzeIppbeNvL0uNsSyjrOf7q+3qa3II44IUhjUKiDCgDG 3/Gljhit4UihQJEi4VR0X/Gop7qGzheedwkaDLE9qH5ASXFxFZwtPO6oickmse1tp9Xnjvb1Slmh Jt7Y/wAX+239KLa0n1a4jvL6Jo7VDmC0bv6O39BW2AAenJGPp7ClsgFPzduTjGKzNS1FdOiG1TJc SHEcI6uf8Kk1PVYdOhUf62eTiKFfvOf8Kh03S5I7lr+9IkvJRxnpEvoKa11YDdL0yRJP7Qv8SX0n QHpEv90VqjPODg9TTiAq+nPesfUNReS4XT9NYNcnmRx0iHqfejcCHU9VnuLsaTpf/Hyw/eyjpEPX PrWhpmlwaXamKIkux3SSN95z3yaNL06HTLbZGfnYlpZD1c+pNW5JVhjZ5CF2jLbj0+tHkgFeRI42 kkwqL94scAfWub/e+J7kqC0ekxNgt0M59PpQ4k8Tz/fZNKibG4cGY+n0rookSJEjjRURRtAUcKKN gHRxpBCkcahERcAAfdHoKgvr6DTLZ7m5fYi9O5J7Aeppby9h0+1e5nfYqde5z2HvWZZ2M1/drqGp RbVUf6PbNyEB/iPuaN9wGWNhPqk6alqalIk/49rY9Ix6t7mtzIyeeTjp/KgkEjd9CfWqWpala6Za G5nYDH3U7sfSjdWAXVNTg0qza4nOR/Cg6ufQVk6Tp91f3f8AbGollLf6iAHhR2NGmadc6ldLqurL 8qnNvbt0T0JHr6V0RKgg9wMf5FHwoYoGKM80bgR1pF5NADqQnFG7nFMOTQFx+cim9xS9BSUtQ0H5 pNwpvNFGox24UvTmmAZpx6UagN/izT6YDyKfQIMUU3OKUHNMYvFHajNFADdpo2mnYooAbtNOHpRS dMmgBCgJzTgMCkzkUc0ALRmkzTecikA+kzml6imgc0AG2lxS5ozTATFLSZoBzSAWkBzSkYGaanBp DM7xIP8Ail9X/wCvKb/0A0UviQ/8Utq//XlN/wCgGitqexnM1u2aTPFBOTgUFTjtWZYg60hPNKQc UwA55oFcXNLmkzRQIawpQTis251mztpXjklwydeKYPENgFz5wz6d6WoGqDzTs5FYqeJtOkdlSUHb 1IHFPPiKwzxL+lPUDVJ9qTJArIbxJp4AzN16DHWmDxNp5bG48e1OzA2g2aXPFYjeJ9PUj5mOf9mo pPFemqThifTAJzRZgb5P4/SkPAz6c4rnv+ErtsfJBM2fQGoH1fWL1ttlYGJD/wAtJWxj3o5WF0b9 5fW9lC01xMqIozk1hfb9R1yUxWCtbWne4I5Ye1Z2k6Y2pa1I95cPdxwnL5+5u9B612yoEjCIowOF RRii1lqBn6bottp2XRPMnb70j8kn+lW7y7hs7Zp52xGOAc9T6D3ou7qGyt2nmkCovf1PoKy7W0n1 W6jv74bLdf8Aj3iPT/eI9aLOQWG29rNrFwl/qIKwD/UW56DHRj71uEbssVzkAfh9KCRjLKBnofp7 VlalqjQTpZ2iCW/lGQvZB6mhu/uoBdT1N4plsrMB72XkL/cX+8fTFP0zS47FDPIzS3knMkzD5j7D 0FO0rSl06EuzmW6lO6WRurn+mKvOwjVnfGF6knih2iwEdwgbcR8vLH2rAZ5fEUxhjLRaahw0g4Mp /uj2pu+XxHKY4i0Wlxvh5BwZT6D2roI4UhiSOJQoUYG0dBRbqwGxRJBAscMYUKMADt9Kr6jqaafD tA8yduI4l6uT0/CmanqcenW42KZZ5DtjiHVz/hUWl6ZLFM1/fuJL1/XkRKewpWvr0AdpumPHKdQv SZb1xxnpEp7CtboPbuajXjBGRzz3zWVqGqTG8XTdOQPeMMu56Qj1P86G76ICPVNUma6TTtM+e8cH e/UQj1PvV3TNLg0y1Kpl5H+aWRvvO1Lpumw6dDtT5pGO6SQ9XP19KvOygEngLyfahu2iAZIwRSSd oXvXPSPN4iuTb27smmocSzLx5p7qPbtQ7y+JZ2igLR6ZG2JJV4Mp7r9K34Ikt4kiiULGowFUYA/x oWmrAWGCG1t0giQLHGMKBxt/xqG+vodNtmuJ5Aqr09z2A9aNR1CHTbR7mZ9oT05OewHrWVY2Euq3 EeqX6bUX/j2t+oUepHrRvqAWNjNqc6ajqiEImfs9t/DGD0J9Sa3gwLDBwT1/woI+cZyWxyfX0rJ1 fWE06FI40866nOIYh1c/0FJtvRALrOtLpkSRxAy3kpxFEBkk9vwzU+kw3cVkrXzkzOdzD+7ntVTS NFkt5ZdQ1FxLfzYJJ5EI/urW2cYIHAPc027KwHH6p4T+33uoXrHMkoAj9qnl8P3MFnYNbvuubRSF YjI+laOsazHp8sdvEpmvZziOMdcevsK1IS4hHmjEmAWA96fM0gsckfCM9zplwlzNvuLuZXkIGAAD T7fwetve3MsZIjkhMYX8MV1hxnB+X+tBYKu7bnHOKXOwscxp/hy5j1JLu7uNyWq7YItvAz3qo3g+ 6m1hbiafEQlL/KPvD0ra0nV5tQsLmdI/njkZQvqR0rP0zXr+88QPpskCKIcmV1JIFVdi0I5/BiXc 9zezzOZ5X3oP7pAxTL/wlcXc6vHOFZYREXC5NO17xFqGlapHbpApjkIC88il8SeJrrSls47W2ErT JuLA96V5BoPl8LSQWNhFaXLh7bJDkZ5PWm3/AIavtSgiS6uw7JJvUMtbmj3n2vSYp2xvIy3PQ+lc pN4ydLa6jYD7T54RFHVVz3p3bDQ6bSNPuLBCs1zvA4VAuAK1AcjOeK4XxH4hvrO+t4YWVFMG8/7R x2rpvDt5Nf6THPOhUv0yOaTT6grIi17QRrkcaPKVCelUR4Oto9DfTEnYmVxI7n1HTFdT0HAppUB9 wByRSUnaw2rnNReFmFhJaT3jyQsoURgYAHrVpfDNml+l0n7spH5ahe49a1oLmO5QvC4dASNw6Ejr UmQfwo5mFjnrTwnbW+oC7aVneMHy1PQZ71JP4WtJrA2m5gjSmUn3rdHrTtwp8zCxz1p4QsrSzuog WZ7lQsjnrj2pYfC9vHE0b3MzIRjaTxXQZHrTchSCeg60uZsLGFp/hqDTZYnjmkKoSVUnjJrcVgAC TjNeZXHifUrjxFIWn8q2jl2Y7AZ/nWj4uvNRbVbWOzmdI/JDEDjt1NNpsE7HfbtynGaxr7w/Y3d+ 9zK7pLgZw2Mip9Fuxc6PbzBsgDBY9yK5DXVvLPXhIt05tldTMSemT0oSeyC510eiWUbFwnz7dpYn JINQv4c09rWO38vCRuWQjrk1PqUs7aPLJYnMxjGxj2461xKa1rFncW+n3riFpHDySMeQuec/UU/e 7i0O2j0GyithB5ZZSwchjnpVlLC2W7a42DzCuzJ7Cizv4L6APBJuTAAJ68VZAJXd0BzU3Y7GZb6B p0N8L1bcednKk9qgv5ktrto9PjD6ncKB/uL3Y+gFWNQ1J1uVsLBFlvWGTk8RL6mpdN01bGLBczTy HdLM33nP9AKNldhYXTtOi06BzveWeU7pJHHzSN6ewFWmIjRmdgpHJPYUMwUbnwAOue1YbySeIJRH ETHpcT/PJ0Mrf3R7UgEkeXxDOYoZGj02NsNKvWb1Ue1bsMaW8SQxLhEGEAHSkiSOCNYoYwiIMKAO g70y4uI7aB55jiNPvetP0Adc3UNpA80zhETqT6+lY9rDNrEqXl4GjtIjmC2I4c/3m/oKWC0m1m6i v77ctrHxbw4+9/tMPX0rb4GfU4AxQ9EAuRtOAeew6ms/U9Tj05MKPNuH4ihH3nJ6fhRqeqw6bGhw ZJ5OI4V6uf8ACq+l6XItw2o37+ZeydPSJfQULUB2laXJHL/aOonffSfd7iJfQVqjhQCCx6n1pfl+ 6M/1NYep6lNNN/ZWmuPth4kcdIlPcn1pbsBdT1SZphp2mgNdvw79RCPU+9XdM02DT4DHHlpHO6R2 6u3uaTTtOi0u0MUZLMfmkkPLSN6k1bbaiM0jBQoyTnjFO+lkAksqRI0jMFReST2rm1Nx4numTDRa NE2OODOf8Kcxl8STjYWi0mJ8bhwZiOo+ldHGiRRKqKFVVwMcbR6AUPRAEcccEapGgRVXaFUcAVFe XkFjbvNcSbUXrjrn0HrSX17BYQPNO+1U646k9gPU1mWVjLqdxHqWoKREufstsfuoPU+po33AfaWs 2qTR6hqKlUH/AB72x+7GOxPqTW1j8B/F33elIWGSSOcdfX8KrX+o2+m2j3Nw21F9OST2A9aH5AN1 G/t9OtmnuWAReo9T2H41l2Gmy6rdrqmrxHI5gtm+6g7Mfem2FhNqd4urakCFH/HvanlYvRj6k10C tubDDHqD/F6VVrIBST3O3tn19Kzb7V4LS5gtgwa4mOFjHXHrUesauunwII1826uMrBGvJb8Kg0LS Ht2bUtQAkv5uTu5EQ7AUkrq7A2um3jk8mnH2pM807pikALyTSdDRn5uKDzSAD0oPSgnAwKQnIxQM UHNITQKRqYDugo5NN5xTx0zSAbjBFSUzvTs0xDTzQOlLikoGHNHOaKM4NAC5pdwptLtNAxdwoyDS EHFC9KAEPB4o5oNLjjNACc5ooB5oB5oABkUDPJoI4oH3aAAZpGznilBxSE5NAC80Cg8U0ZyM9KAH Fs8U4DFIuMnFOpWHczPEn/Ir6v8A9eU3/oBoo8Sf8ivq/wD15Tf+gGitaexnM1R1peaSlzWZYHpT DxUlNODQFiLBLCnkHBwaUYzSnigRn3Gm2su+V41LHuRXE6NGk/2q2tLcNdyysDI3SNO9dxqcnkaZ PIRkCNjgd+K5nwCQ9vduRmR5Cc+ntVU3uJ6HQ2OiWVnapEIFkYcliOSe9F5DplnbPPNFEqKOuOv0 qzeX0VlA00zAIv6/Sse1s5tanS/vgy2qn9xAf5kUXc2BHpNkb64a/mtEht8EQIV5I9SK2DY2oBIt 4z6/LVo8HOAvAx+HtWLqeqTG6TT9OVXvH5du0Q9TQ5N6IEVtVlgFwdP063R72QZ6ZEQ9TWjp+kW1 laKHiVpMZZtuMnvS6VpUemW+S3mTMd0krdWP19K0j8g3N075ocmlZDIWihiTPkqAOvArnri7m165 +w6c+yzXIuJx/H6hTUtxPca9dvZWbeXZg/v51/j9QtbVrawWNukMEYSNBwoHGfX60bayExLa1hsb dYYIwiIOAP4vUn3pbu6hs7dpp2widaS9vIbCB5p32qn6n0HrWZZWs2qSx6hfDbAufs0B6IPU+uaV nIBttZPq8yahfIVgX/j3gbp/vH3rcxxnGCcD/wDVSkZOSuAcfp6CsnVNSlilis7QB72YEqvZV9T6 UN30QDdV1d4plsrPEt9J9xPRe7H0AqbStMGnw7pGaW4kO6WRh8zn+mKdpulR6erSsTLdTcyORyx9 vSrxIRWZ2GF+8WPAFD93QBsswgRmcgKOrE8AVz7PP4jvAELxaVGcFhx5p9B7U5/N8Ryso3R6XG2G YcecfQe1b8UYjSOOJAoRcKqjgD0pLRXYCRxJDGsUQVFA4C9vaqOp6qLCJAimSaU7Y41HLH/Cm6pq q2USJCvnXE2RFGvVv/rCm6ZpkkEzX183nXrDHPSJT2WmrvV7AtBumaTJDL/aF6BLfODznIjU/wAI Fa4wM54zye9Io4AyR61jahqNw10NM01Qblh+8l6iIep96Td9EAupanNLOum6W266b/WP/DEvqT61 e07TYNNgZUy8rcvK33nPuabpumxaZaiOPLSNlpXPWRvXNXWKqpLsNo+9z2p6JWAGwikuQoA5ycVz kk0/iW9NvCxj0lD+9kHBlYfwj2p8kkvieVoYiyaYp2ySDgyEdh7VvwwpbwpFGoVEXaFAwB/jSWmr ASGBLeBYo1VEUYCqMAD+tQ3t/Bp0DTzvtCnGO5PbHrS6hqEOm2rTztjH3V7sewHrWVZWM2qSRalq SYUf8etseiD1PuaN9QG2dhPqlymo6opWJc/ZrXtGPVvUmugXrwvzHjj9MU1N5LHbjPHuaz9V1ZNP VEjHnXEvEUQ6uf6D1oeuiAbq2sJYRIkSm4upsiKJerf4CotH0hoJDqGoP5mozjMjnnYvZQO1P0nR mtppL+/k8+/k5Zj/AAL/AHR6VrgADsAT1NHwqwCFe+OD1561k6xrJsVitrRfO1CYHyouuPc+gp+q 6obFYoYIvOvZ+Ioxzgep9qbpGkCwme8uH82/uOZpD+gHpSSvqA3R9E+w77q7bz9Qm+aSVuSM9h6Y rYAIOGIAPU+tIMAjA92rD1LVppLsaXpS77ph+8k6rCPU+460/iYBqerzyXaabpYWW7b/AFr/AMMS 9yT61s7XMA3tuYqAfrVTStIg0m3McRZ3c7pZG+87fX0q60ixqzswCpy2e31pOy0AyfD+ly6XZTLL gNJKXXBpNC0g6e95cTHdPdSl2Y8/L6VVS7utfvQbN/J06FsNJjmU9wPauiUbQAo6DAp3aCxymv6H qWq3snlMgjkABYjlR7VPqmiXckVslk0ZMEYTLDkeprX1TU4tLtjJIPMlY4jhHWQ+gFR6PDerC1zq Eoe5m+bAGBGvYU09AsM0TSX0vSUt5pPMkYlnPufSsk+EozZ3YwvnXMu8yHqAO1dWCcZ5OaxdV1do J0sLBBNfyjIHaNe7H0xSTdwsV30ewm8RQSO6yyW8GxUPOOOproFVY0AUAKo4AGAKzdJ0ldNiaR3e e7lO6aZurn09gK0yeOe/T3pykFgJwDnI9/SuYvLq4167l03TpDHbrxd3CdvZT71PeXNzrN1Jp2nl ordDi6uR/IVs2dnb6fZx29ugjijHGPXuSe9SlbVgR29vBpWnCG3TbFEpOOuT3NV9K1Fb7R472UiN WBbJ4wvvU2rXUdjpd1PJ0jQkj8OK4vwykviOwjsZtyabbYMqg4M7Z6E9sVSV9WB1ul6lLqk08yxl bIHbDIwx5hHXHtWntNIkaxoqrhVVcAAYAA9qjvbuKwtZZ7htixjJ/wDrUn5ASYGQO/pSsm4EHoeD WHo7X+pXBv7lTb2n/Lvb9yP7xrdyKmzQHMXHgyyutR8+QkRs4ZkTuQeKtav4ch1SZSZ3ibZs+U8l R2rWvLqGxgknuHCJGMkn+lZWjy3uqXLajOhgswdtvbnqf9o1ak7XCxct9Jt7OztrSDcsMByOeWPf NULvwtaXl4Z5ndhuDbc8MR610BwAao6lqMOlWxmmPzZwiDlnY9ABUpu9wsW1jVVCKAECgYrn9Q8I WepXVzd3LM88+BknAQD0roIXeWFXZdpYAkemacThQTwD69qL2Cxm6Po9vomni3iZ25yWY0mo6hLF N9jslD379u0QP8R/nTdU1R4biPT7JA+oSjOT0iH94/zqfTNNj062I3tLNId0sr/eY/4U/NgLpumx 6dC53GSeQ7pJD1Y9/wAKuuyIGLEAKMknpQ7BMncFC8lj0rAaSTxC7wwFk0xGIlkHBmPdR7e9LfUB Gkk8Rz+RAzx6ahPmyDgyMOy+1bkUKxKkcSBVUYCr0FLDGkMKRRqFRRhVUY2/402e4itonlmbaijO fX6U/QBLq5gs7d55nURr3Pc+grJs7WfVp01C+Vhbpn7PEeM/7TD+VJBZy6xcx39/GyW6H/R7Y9vR mFbjPjJ28kY47Ci/KgAsSTjv/niqGp6pDp8S/wDLS4fiKFfvOe34Zo1XVItOiUAGS5cgRQr1cnp+ FQ6Vpbo66jqDB76TPXpEvoKFqAaXpUkcx1C/PmXsnQHpEp/hFauNg5Xb6980oPQdPX3rG1DVJZL1 dM075rpwd8h+7EvqT60twDUNRuJLpdN0zBumGZXPSFfX61d0zTIdNtykZyz/ADSyN9529SabpmmR aXA6R5d3O55G+8596uvIsCs0jqioMszHgfWn5IBsrrCpklcRheWJ/hHrXODf4mnKKJItIjbnsZm9 vapCJPEsrAFotIjbHHWdv8K3kjjhiSNFCqi4GBjaPQClsAkcUcMSpEoRVACqo4UVFf3kVhbNNM2F X06k9gPWkv7+HTbV7id9qp+p7AetZNjaXOrzxapqSGOJP+Pa27Rj1b1JppXV2AtlZz6tcrqWoRlY V/49bc9EH94+proCw5wvJwM0gP3uOT3qve3kOnW0lxcOFSPr7nsB60tQFvLuGwt3uJ5Aqp+JJ7Ae prHsLKbVboajqMW2JP8Aj2t+oUepHrT7SzfVbhNS1BCkcf8Ax723aMep9Sa3MAjODk9SP6U72QCF fnA4zjr6+lZur6tHpqKgXzrmU7Yol5Lsen4Zp+p6pHp8ChB51w52xRDq5/wqrpWkSJMupak+++k6 AdIl/ugULTVgLpekPBO9/qD+dqM3LOeiDsqjtWu3yg84A5JoztQMcLjJZielczJeXniC/wDI052i 0+Jv31wB/rCOoFG4HSjnPtTj0pigIqqCSFAGe5p45pWGIOtLTsU2kAHmkxS0U7jsJigjNKBkUuKL CG4pT2xRRTGFFFKBQLQMHFAXNLuA4NIT6UDsGKbjJFLzS4xzQFgxzTqQHNG4UAKeKYfanGmdaAFo OT0puCDyadj3oATFAHNLS4oAbzS9sUu00h4oAKQDmlpccZpXAQ80mKUc0oHNGoCqOtLQfaii4GX4 kP8AxS+rf9eU3/oBopfEmD4X1f8A68pv/QDRWtPYiZq96XFIBg5pc1mWGaSiigA4pCeaXvQcGgRB costuyuMgg8etcv4dez0nT725kkAVpTgf0FdTcNiFuP4TXJ+GtJW5Elzct5kaTHy4f4Rz1+tVDS6 EzStbO41a4W+1BSLZf8Aj3g/qRW5lFJJGDjHsBS7ht5wGxzjsB6VjalqMz3A02w+a5P+sb/nkD3N K99EA3UdSne8/szTFDXR/wBY56RA9/w61d0zS4NMtiqjfMxzJK3VjSaXpkOm25WPLSsd0kjfec1f ZtgJPGKd7aIBsnyg7uAO5rn5JpfEEjW9pI0VkrYmnX+MjstEssviC4a3gYppyHbJMp/1p7qK3YYI raBIY1CoowABjH+NCVtWAW8ENpbJbwqEiToMd/Wor29hsYGmmbaF7d89h+NNvtQg0+2aeZtu3t3z 2rOs7KXUpUv9SQqgOYbc9I/Qn1JpJOTv0AWzsJtRuUv9RG2JP+Pa3PRPc+tbZf5SSMZ9uw9qNv8A EeMjBrJ1TUmidbSwCveS8AHog7k+lDd/dQC6lqrRTJY2aiW/kGVHZB/eP0qfTNMXT4mcsZLmQ7pZ m6uf6Ae1M0rTI9OjaRmae5lO6SV+rn+gFXpJAgLO4UYySTxQ7LQAkmVFaRyAqj5ieNtYW6XxHLtU tFpkbYZhwZj6D2pdr6/c7fmXS42xu6GY+n0rejVIo1WNVQKNqqo4UU0rasASMRokcahVUbVVe3t+ NZmqatHZLHFEPOupuIol6v8A4Ck1bVfsMKxxAS3UpxHFnlv8B71XsbeDTGbUNUuFk1CQZaR/+WY9 FqVq9QLGl6W9u7Xl7J599MMlz0jH90elamQpGOMnk1jSeJbMk+QjzEcnYpIqpP4heaB40tpUZsgM F+7703dhcsahqU1zef2ZpjZnI/ey4+WMfX1rS07TodPtzHFyW+Z3P3nb1JrB07UoNMtvJt7OXLHd IxHMh9Sat/8ACRPn/jzlx6YoaeyC5uM6xqXc7VXlie1c/L5/iScxwu0elI2HkHHneqj2qrqOoXGq IkDW80dsW3SgZy+P4foauQaw1tCkMGnuqIMIAvQUlG2rC6N+KJIYUhjTaijCqoxj/GoNRv4NNtjN O2B0ULglj6Csz+3bnB/0CT/vms+SdrrU0vLixkcRjEcRHyg+v1p2bC5esdPuNRuF1PVo8Z/49rc/ diHr7k1ukfMT0zjOP5CsT+27tsk2D5PfH5Uf2zejkWD5+lEk9gLmqaomnIsMUfnXUn+qiHVj7+gq PStJNtI19ev52oyjLydQo7KPSsu3nuIbyS9/s6Vrh+NxOdo9BVyPVtSIGNNIJ6+9FmkFzdz6YBPJ 561k6nqwtmW0t08++lzsjH8PufQVH/amonI/s4n2NULNb20uJ7prBpbqc/PK3XHYD0oSb3A1tI0o 2KNPdSGa+n+aWU8n2UegrSx8uM9jn3rF/tHVVXK2Jx19zVO9vdfuLVo7a0EUjAjef4fcUWbYXLmq anLNcNpmlAG6cfPIOkI7k+9XdN0yHTbfZCuXfmSQ/ekb1NYGlRalpVoIY7Iu7HdJIfvSH1Jq+b7W DjFlj8aGtLIDcLxqpZ3UKOpPAFc7KZ/EtwYoi0ekq2JZBwZSOw9qr6pb63qiJAYjHbZy6qeX9RV6 3OrQxJFDZLGijAAPSlGLW4XNuCGOCOOCCNURRtAA6VV1HU4tPt1kZTJJIdsUQ6yN2H51TMusEH/R 1/76rPTTtXOqPqc6rNOV2xqx+WIewoabAv6XpsrTnU9Tw96/3FzkQr6D3rZPKnLYA71i7tbxxHGB SP8A26UO3yVOOD6UNNqwXJdT1R4rk2Fiok1BwDtJ4iH95qm0vSI9MiJLGa4lO+WZ/vOf6AVk6dpe paeJXVkeaZt0krj5j7Z9Ku7dZ6lo8g8UdANj+E5bnvjsKwLq+l1q7k06wYxwp/x9XC9B/sqfU065 sdZu7ZoFuxErggsoGeaLPStRsbdLa3aNIk5UAd+5PrQkgNe0tYbO2WC2Ty4UHC+/ck96lkljijZ5 ZFREGS7Hisr7Hq5JJuwPbbVLUNB1HUrdYZ74iP8AiCr19qHqBS1QXfiWwndCYNLiDFV7zsB1+lXP Acax+F42C4Z3Z29c9KsNo949n9lF0I4dmwKq/dHemWWhXVhbJbw3pCIOPrmnfSwtTbu7qGxtZLm5 YRxRjLFu1YlpaS63cDUL9Cloh/0e1bv6O3v6Dmm3Ph+e8Mf2m9eRYzu2nox7Zq4NMu/+gg/GOcdR 6UfMNTWBHOQBwOfQDtioru8t7C2e5uJFSJOSx6VmNpV0T/x/yVVu/DP29dlzeSPGCGC9s0rX6juL bW0+uTrfagDHYq2ba2b+L/bb+lb3mDPBA6D2ArJ/sNyRi9lwAAPYDsKF0Rw2ft01ErbAXdR1S30y 2M0rZbIWOMcmRj0ArO02xkuLganqm17huYYyflgX0A7mkk8L200sckk8ztGcqWbofWpRoKGTP2qY 49TRZIDX8yPP+tAHesnVdXMUyWNiytqEwO3P/LIf3j9OtKuhRhv+Pqf86YnheyimecNJ5jj5m3cm kknuwLGk2NtpkOS/m3DndLO5+Ziev4Vf8+InmRR6c1mHQbZhzLN/33Sf2FabSu6QgjBy1PR9QKUl 0PEFy1tE/laZC2JZQ2DMe6j27ZrdiltIIlhRoljUYUKcbf8AGs1PD9ki7UDgdsHGPWnjQLQc4fj3 p6WsBbn1C0t4nlluUREBYsT6Vk2kg1WX+0L2QR2gbEFsx4H+03v6CrLeHNPkXbIjOuc4J4p39gWJ wCrcDH3utSrIC+L226+bGSBjOetUdU1210628wMJpnO2OFerE9PwoGhWSj5Y2J/3qX/hH9O3KTCW K/dLdRRZdwK2mQxRStfajPHJfSDgk8RKf4VrV+3WoXCyofx61VOiWJB/dHPUndTRodgT/qj/AN9U 3ZgV9U1vLrZafKn2qbkyfwwr3J96m046dptv5aTo8h+aSQnl29SakOiWAyRANzdTk01dCsAcmHP4 09LWAtHVLMDJnQj3YVg6jImq6gkEt0semxcuob5pT6H2rYGhaaw/49xj6U0aLYDA+zrx14pLlQD4 9R0+GBY45Y0RBhQCPlHpSPq9jHGXNwmAM8GkGlafgj7Mv5UHR7DH/HrGfYim7MDCtJYNRvhqOozp 5UZItbUn5UH94+prd/trT+c3KZ9c9aU6Pp5AH2ZMDpx0pBo+n5/49Y/yodmrDEk1vTokLtdIABnr WBYXsOqXh1HU5VSGNiLS1J4UD+I+pNbzaFprSBmt0PtipDpdiTn7LFkjBOKE4oQ1dbsMf8fCknqf X0qtqHiaxs7dnRvOkHCxqOWPYVbGkaevP2aPP0po0uyBDfZ489+M0tAMbSprOJv7R1GdJL6XOMni JfQVrnXtPUf8fCgDknqam/suxIwbZMf7tJ/ZFh/z7p/3zT0A5u/1qHWb3+zYpjDYp81zKODL/sj6 9K2bbVNLtoo7a3dFUDAVe3+NWv7JsAT/AKLHz1GKP7JsI5BKlrHuHI470aAWwcqGHQjIpynimjoB wPb0oPt2pDuS9aaRzTQcCk3bjxSDUfjGTSdRSA80MeeKLBcN2OlJu+tFLjimAoORRTelLnNACjmn gcU3GBQGqQ0Aikp2eKbVDFFLkU0cUDrQAH2o/CjODRvNABzSjFNJ4pQaAA80u0YpKXePegAxjmlB yaQuMHrSKaAHnimGnE5pMd6AEzTx0pvFAcA45pWAMHOadSE4GaAwNMBaKMUVIGZ4k/5FfV/+vKb/ ANANFHiT/kV9X/68pv8A0A0VtT2Ima9JijNGazLFyKbRRQSFMGc0+m0ARXHMbD2NYnhPP2CfJwBM 1bc/MZx6VyGjXN21g9nZDEsszFpMcRj1PvTjroBtahfzNOtjp3Ny4JdhyIh6mren6bFYW+1SzyOd 0kh+8596dpmnQafb+WuXc/M8h+8596ss4jBkbAjXkkngU2+VWGLIRErFmCgdSe1YDSzeIJjDAWi0 5Dh5h1lPcD2przSeJJjFCzJpqHDydDIfQe1bsESW0KxoFRVGOOwoStqxMLeCG2iSKFBGiDC47etR X17FYW7TTttA4x3J7D8aW9vYdPgM0zbcdAOST2AHqazrOwkvroX+oKMf8sIc5CD1+tLWT8gI7LT5 tRuF1DU0AUf6i3P3UHqfU1u/dGTnpyfUfSlJAYbjtJHP0rJ1HVHjuEsrFRJfOMkdoh6mhu+iAj1X V3trhLKyUT379VzxGPU1Z0zS49PXzHdpruUbpZn+8/t7AUmlaTHYReZnfcOSZHPJYn3q/LIsaM7s oVfvEngUaR0AJCioXdgFAznPSsBjJ4guio3R6WhwWHBlPcCkDSeI5SUYxaVG+CRwZT3A9q34Y0hj CKoVAMKB2HtTStG7AWJEhjVUXaFGFAHCj2rO1rVf7KsfOC7nbhP97tmmapr0GnMIUzPcNwsSfeJ7 fSs5dIvdelWfWHEUA5S3Tg/iaSTlq9guZllc3E9wX09PtOoygiS6dcpAp6gDvW1aeGULCbUp2u5j yQx+QH2Fbdvbw2kCxQxKiL0VRj8c09e5703LSyAZFbQQxhI4wAOgUYFPEan+EU7tQDxUhYTy1H8I o2qRjFGTRmldhYNq+nApQq9cUhbilB4ouwF4zwP1oYYpB1pXPGKdwsAxjp+tLgYpFp2KV2MBjHQU nIpaKdwEweT0pMnPemyBn+62KRY3HVqWoEpJwOeKTAxxn86D0oU0gEA56frTiOOn60DrS5oEIOPS gEg9qTcM4paBh+A/KgjPRelNdgiksdnGef51z154pRpTa6XC13PyCVHyqfc099BHQ5BHQAUySSJR jKg1za6d4ivh/pF0lqh52x8kCpU8LNnE1/cyuenzdaOXzC50AljwB5iU0yRD+Na5mz0iyvriYW9/ O6wnazBuAfSrh8P28ZG+7n56ZfrRbzA2xNED99PzFHnxAt+9TI6jPSsf/hH7bbuE0ntluKzF8PSX OuZM0sVhAuV+b5pT7+1Fl3C51Xnwk5Mo/wC+qT7TADgyqP8AgVZv9hWO0v5km0d91I+iacr7WkYN nGC3NGncZpG7g/57pjtz1pv2y3HWZB+NYMfhuObWDNJM0dug2xRBuW9zV8aRppjLjJUdTup2XcC/ 9ttiP9cn50ovLcD5pkH1NZ8ml6bbkB/kcn5QW5qgnhyK61Y3UuUtYR+7iDH5z/eaiy7iNw39r/z3 T86DqFoBnz0/Oqn9l6as6xFAHYZA3U25tdJto0adFVXGRk9aWgFwalaDrOg9ORzSDU7PJ/fp+dY9 rpdlDJPq968SpJ8qrn5FA9Per8UGmTQtMiR7AOTxxTsguT/2rYsuRcLg96U6tZRjHnrkdRVB/sM8 DDToYZrk8Jk/KPc/SrdrpFslukbxI7jksV6k0WQD/wC17Hk+eKY2u2AjJacKB1yOlNthpl1JJHFH G7J94CsnV1srzUINMVoY4x88+3q2O1KyC5sLrdgf+Ww9uOtINZssnEv6VXlvNGsJxZusSuqjCgZO KlmuNLtrQXcixCJjhSR940aAK2vWCDc04AzjJHf0oOv2O3IlyPYVQlj0u8ddQlkjFladFxgE+p+l XbG+0u/jZoEj2oNx+UcD1NOyFcDr1kBnd+ho/t+0/vH8qZZ6ppV/cGG38t2yRworT+zQjnykP0Wi yGUP7esxzhv++TTB4htSxJD/AJGotT8QaVpl21pPtEyjcVC54q0dSsUEG9FXzhkblxge9FgIh4gt M/df/vk0g8Q2+f8AVt/3yaBremOIXTYVlkMaHHUirkN5aTXE0SeWWhGZOPu0tAuVD4ghPSGT8jTT r8Q/5d5P++ans9WsbyOWWJlKR53EgcUn9sWJgt5ztEc7YXIp2C5AfESgf8e8vPbBpn/CQjk/ZZvp g0yHxXpc94beI7iH2Z29T7VHN4usobtbfyJN7ttXI+99KLeQFhdfB5+yzfTFOGvf9O0vPTitWFhL Crhcbx0I5FVrjUILa5gtn+/N046UtAKJ8QHJAtJyfpQNelIyLKT6banl8QWMEN1Iz/JbNsZgOrel LJrdpHpkd5uBSRgox6mmFyv/AG5MT/x5Scf7NDa7KGI+wykgZOFq5NqdvFfQ2rLhpVyKo3XinT7e yuLoAtHHL5OVHVv8KPkFw/t+X/nxmxQ3iGVIy5sZsD2qXRdZTWQ7JAyqvqMVp3NuLqBoXJVWGDg9 qNAMK38VG9TfbWskiZxuA4OOtS/2/c5wLCY/hVi/v7Lw5pkbsgjhU7URR3PeobfxLYy6VJqbErbo cZxyTT0Ar3XiaS0haeewdIl6sRxSL4llmjV006QqRkHHapYdY0zWIWaRT5cC+cyN6Dmn6T4msNVn NvbLnaMgYxxRZAalhO1xaLK0XlMx+6euKn747+lZ02sW1vqaae7AHYXJPYVl3vjKyt7ZJhGz7pCg wPSkFzpmBA5oGMcdaztK1eDVrXzouB6VoAigdxQPmxkUhyDheazhrdu2o3VqTg2ybnOO1Z1h4vs7 +9FvGCNzbVJHWnZiudF0pw5FZus6zBotmJ5Tu3HbtHUmotI1u31iEyRYGOo7ikBq0VgJ4t0xmnBk 2iIkE9yR2rbtblbqBZEwVIyKGO5Kc4pBS5zkUnQUrAOopgJyKeO5pjsFFFGQO9AhpDZphyOtSb6D gmgdhM/KDR0PSnfdHP4UzeSelAWH9qbS7s0h4oAXFIeDSZJpc8c0AOJ4oBwKbnik5oAeDmmkc5pQ cUE5oAU5K0g4pQcCgkY6UAKDmnU1adSAzPEn/Ir6v/15Tf8AoBoo8Sf8ivq//XlN/wCgGitaexEz VoopcVmVcSg9KKTNAhMGg9KcelMzg0DK9wC0TDHGDWP4UTbp85PJMxzityY/un/3TWJ4YkRdLndm AQTNkk1UNNRM25XWJWZmAC9Sa58+d4juigZo9LjbBYceae4HtTz5niKcou6LTI2wX6GU+g9q3o4l ghWONVRVGBgdBQlbVgEEMVtGI40VEUYG0dBVfUb2PT7ZppCeDtCjlix6ADvmlvrxLC3Mspy38MY6 sewFULGwlvLlNQ1D5pP+WUZ6Rj+ppJOW4DbDTpbuddR1AAt/yxgJ+VB6/WtnZheSf8KUEnGQQO1Y +qanP9ojsNOUNeOPmPURD1NDd9EA3VdUmSc2Gn/PfyY6jIiHqas6Vpi6bbEsTJcOcySP1YnrTtK0 qPTIQFYvM53SSNyzMff0q7JKsKPJI+1QOS1DdtAGSyJCheVgqqNxye1YAaXxJPhQ8WlIcFunnH0H tTT5niSVg2YNJjbpnBmPsfSluvEEcciafpNuLiVRsG0fJH+VNKwXNp5rXT7Te7RwxIMAdl+g71gy Xeo67I0Ono1taD707cFh3xVq00CS4mW71ib7RP1RAMKlb/lqFCqAFUcDFDet3qBl6boVnp37xU82 4I+aWTk1qHGenak6UVNwsFIR6UZpaADHFIBzTvSkHJPtQApxim4paKVgDAxSY54paO9FwEzTgMil xSYOeKAADApeaU9KTORSAWiiimO40dadRxR1FFxB1BpAMUo4FFIAoopcHPT8aAGbTuyBn2qK7vbe xtmuLiURxqCSTVfU9WtdKg8ydsuThYl+8x+lcjdi91O7gluwJbuU5t7LJ2RKOjv9OvemotgJc6ld +JNZhslWSCwY5MY4Zhnkn0Fdra2NrYwiO3hRYwOmOc/Wqmj6MmmRvI8hnupsGWVhgn2A7AVpt0x0 pt9ECAkLyfl9a5y+up9auZNK01ykIP8ApVyh+7/sqfenXt7c6teSabp7rHBGR9ruQf0HvWvaRWWm WiW8LJHGg4GecnqSe9C01YDrGwt9Os47a3jCxpyfVz6muV8SxS3Xiawh+1GCERs7c4HFdYLy2IJ8 9APUnpXOPaWHiuWS5kZljQmNGzgsO+KI/FcDE/tK7n8NxvHK/wAt6sYYdxuq3e6jLJqetJBdFo4r MMAp4RtvaukGjaaNOTT41CQKegIyT61Vj0vR9F0y6Z2RUkX97IzZJA7VXMibHADxLe3Nlp9ksjgq +6Rh1YZq3eRand+I7yOxaaRhtx83yjIrq9M03Rbq1juUgWNSNke7glQc5rYtoNPs5pJImVXkbLHP UU7xHqc7Obu18R2dvLM277ExcA9DiuQtNR1IRwRmV/sz3ON/qQ3SvTLpdMFw9/NMgKxlS2c4XHNZ WlxabqdlHK8KwW8cpMCtwSc/eIpJ9xHLa3NImsX9xcSS7wVEOTwBjmvRdLlafSreQgnKDr3qnd6f o95cLNceW5Bzyfyqe81mw0qzaUyLiEYSJOd3oBSbXQepj3Vylt43iknlCReQSNx4zWXfXNhqPihp 7qfNjbwER4J27q32i0nU4ori7CF3ToT0pxsdCeAQsITGpyFz3ppoZy0sb3/hKJpmdYTc/uhnqAaZ aeXceH9SgDuQjjkHGT6Cun1XUtIiitrMKsm8hUjXog6Emrca6PDbfZk8pYWGdox19TRzImxy/gpv K1m6j5KBBg/wp7A+tdrqV39i025uP+ecbMuO5AzVO2uNJsQ32cxR55bHOapHWodQ1F7ZAosouZJG /jPoPaplqyjlvCM17aauhmikC3OSSw4JzxUsP2TTVuXuYXn1GW6HljkkDPH4V2bahp+UYtHlOFAA 4FRte6SJhOxjDjnzCuSPeq5l2Jszi9d0y7vPEV7JBGV2W4bd746CrVzaBrHQjcb3toDlx75re0/W 4Lx7m4ki8i3dtqRsOWx/EauS6jpbQLE2Nig4AFFw5Wck6rqVjrMkcbrYl1EAxjcR1p/hiNw+oW3l s0LwhXkxgfQV1S6npscAiCgRZ4QDgU6PV9NiVkjARW+8FXrT5mOxxfh6P7Lr1nHDC7LlxjacID3N eldE5FY66rpsTl402sepA61Idfstvf8AKpbuM43xBCo8aSvJ8sBUZYoTn2q/4r8zVLGwhsYpDLP/ ABYxsUDHNbjatpsrbpI95/2lzUn9t2QOQrDjjC9KL9AscfcWV1Jo+k2lnCY5YrgrnHc9SamS0vdK g16GNZZ5XCoj45bcMH8s11P9uWKkMsbZUk/c9RTP7ds8j91J6ng8mnfyFynLeH9M1LTvPtprZtk0 Jxj196SBZ7z+y9JSCXFs5ed9uAAPeurbX7bvE57Z2mmDX7VCdsEgLdSF5o5/IOU4hoJrHXIpLGyk dkkYqMcfjW/DDPe+J9NnktSEiibcccA1rDXrZDuS2kDdiF5pw8QxY+WzlX/gPWjmfYLGzgdxWJ4q tJptNM9t8txEcoVHOKePES5H+izflSN4gVgA1pMR3BFTre47nK3Ojaj/AMI7ZaekLvcXcxnuST+V DWeo2ugtZ3EBbyZ1cbeRwe1dWPEBJ3CykzjqVpTriFdv2KTA9VzVcz7C5TntauLrVIBJZ2kyTwAY cjB6dqS90Oa28D29ssZa53iSQA5JJPJre/t3B/485Of9mqN9rWoXE0MNvZSJAGBlbbyR3xTuFibw izxWn2UQyjby7uMDPpXTfr7VgjXXQYXT5cY9OtKuuznn7BLj/dqJK4xniu1S4sI1nVmRZASqjOOa 56yS5i8P6hLHYusYcfZYXH/jxFbD6nfXGpRO1nILSFThCOXPvVo65KcIdPmIB44xiqV0rC0MXw5b Rixu90Mz3c8R80lcD6D2qv4e0+e1122+yWsscSg+dI3rnpW5ca9cRxMYdNlaUA7QRgZ7Zpuj6lqK 4S6tH8+V8tJjAUen0p3fYNCtruhT6r4ktihZYBG3mOOCfasdPDV5PbWVqY3RPtDFiTzs75r0hT8h 9D+dJx6c+tTz6WHYoaTpNvpNl9mtwcHkknvV0Dg84pT7UoxnJ6VN2wOXtbGRvE2qyyxMIZExnH3u K5bS9Bv5fE8Ugt3jt45CxOf4c16iTxwOSeaao2n7oHpjrVcwcpyHi23uNT0keVAyiKXuOSKb4G0+ 5t7W582Bkic4AbgmuzcAphguPQ0uSAMYCgdBS5tLAeceJPDiwXqCwhkeWTLs/Ye1bnhC51O4R0vI TGkfyqSMZrqiihtwUdMAnvSYCnhcD0AqnJNDsxQOadxSds0uDjpUgJijvxSA5OO/pTsUDE6UhUE5 NKSCetFIBMUDrSjPpSjB6UwEbkU3FOoyMdDQAYpCM0ZOOh+lKKAEGKXFKcAU0nC5xke1ABikp+Dz TQPcUAGKSn4OM4/ClIx1FACHBGKbilx6c0UAOAxS0m4UtSMzPEn/ACK+r/8AXlN/6AaKPEn/ACK+ r/8AXlN/6AaK2p7GczVpc0lFZl2Cjig9aO1AhM0hwaKKBEUwxE5PTaa5PRNP/tLTfLkkZIBOxdVP Lc9K6245gb/dNYfhMD+zZP8Ars1ONrMDeijWGFVjVVVRgAdFHtUF9fRWFu80jEY4ULyWbsAO9M1D UItPtjLITnoqDksewFUNOsprq4Go6iAZSP3MPaJfYd80L3nqA6wsZLu4GoX64kPMMOciIe3ua1DN HjIdcenpTpQXjKq2DjgjqKwF8NOzM66jMPmycGj4nYCTVNWkF0um6f8ANdyDdntEPU1c0rTrfTLY kP5k7ndI7HljWfH4VjgkklW8lRn5ds8/nSzaEsSM82oSxqnLEv0HvT2jYWpuS3NvCm+SVV9ya4zX NbttQ1OC2jlaWJOsUXJduw9MGtOPw5Z30HmSTzyowIG5uDUaeDLS0mEtrKYW65oaXVjGvouo6wka 3cwtLQD5baI9B6fjXQWOnW2nQeVawrGuOSOCfrWULfUoZBHFdhnxnacZxTXvNYt/vW4lA703d7E2 OhBI6kCgnH5Vz6a7cKP31ow/CpV8QWbSYkJjOOhFTZlXNnOaKpxanaSjKTKasLPEw+V1P0NIB+KW mh1PQ0uaAFoHAooz70AFFHaj8KVwCjvRnHXijNIB2aWm+lKW7U7gL1BpAMUDgc8Ubh60hi0UhbFG RTuAAg0p9qaeDS5HqKQC0UmVHVgPrVebULW2UvNcRxgc5ZqALJ+UjP1rC1XxClrONPtIzc6i/wDy yXnZ6EntWZN4hvtZuXs9DhIi5D3bDgfSnxW8Xh1Vs7Pdda3dHcXc5IB6s2M4A64qkurFch+yT2V3 umxfa/cDKK3KwL6/hXRaTpa6dCWkYzXcx3TzN1Y+nsBTdL0wabGzs7TXUx3Sytwzn+gHpVye4itL d5p5VjiXkyMaG7ATNt5zxXNahrc+oSSWGhxNK4BRrgfdU9OD6imPJf8AiWRo7Z3tdMU4aQffl9h7 Gsy512PRfEkGkWMcaWkOFfB5Zj3JoiguXtN8J3dvaCCW+ZBuLlIx0z1571ox+GbRcGWWeU9tz1na n4pk0tb5JMNLtBtUPU5qtrHii4068061cgbog87ehPaqakwubs3hqxlQoDIoIwcGmQ+GLWBPLieR E/ug9PpVPUdcuU1KKOLAR7RphnsccZrU0O/a50SG7nYZILMc9AKEpBcjPh23HBml/wC+qbJ4asJV xLvdR/CW4rnNJ8YT3mvzwyMAhLCId+Kx4fFOpJqrb5jIgmKH0HNFpBc78eH7NMffHOOG4GKcNEsV GShznjLVS8OalLf3GpecdyrINvsMVz3iS/1BvFK2dvcukWwEKvvSs27Bc67+wbCSPaUJDc9aeNEs lBxFx6A1bs4jFaRJuLYQFifWpJmKQuwOCFJBpNsLGe+kacDho/8Ax7rSSaNp54eBWPoTXGeGJr3U dZLzXEsiRysXXsMHgGppLu+nOr6tPeMiWrbYYc4HFPll3C6OufSbBVGYQOBxnjBpU0fTiAwtkwa4 LxDqd/JqFuYpJATahwifxe9dj4SluLnQYJbhsu4Jweooaa6hcvf2Pp6tuW2Tf0yfSnjSbLqbdM/S reKUGpuwKg0uzBz9njz24oXTrJflFrHgH+7wauZrkvFPiWbSdQs7O32ncC0mf4RQrsDoTZWOM/Zo wc4+7SmwtMY8hPyrkfEviW7tbiyW0kRUlj3HJ6ml13WL/SvDljJHMDNM3zt6ZGarlkFzrvsNqf8A ljHnuQP6UrWNtn/Upx7CuGsPFN+NDvbgpvkhdY0cju3FbGlXmoQX9pb6g6u1wm/6UcsgujofsduR /qFx9BSfY7YHiFCR7VTbXIV1JbNUJkyB904rA1p9Wi1a1gjvMLdybQu3G1c8496lKT6gdatvAQCI UORn7tBggAJ8pMA4+7XK6j4gn0nXTbSFpAtqCqAcsawr/wAR6i+maa4uPKEztvIGeKfKwuekiGAY HlR5zj7velEMRHEaf98iuC1m+1LT/DtnN9qcSTynexHbtWcniLVf7JvpfNcCGRBubg0crC56b5MW M7Fx24HNJ5UYIARc9enSvOE8bXEur2yoo8mBNuM/earlpqOox2MGr3d8W+03G0QjoBnijlYXO9Ea FeUUfhSCOPptG7sMUqtmJGPdASfrWDp99NN4n1SGSX5YwoQduaErgbuyMHkD8utIRFycDFcleT3W peI71Eu/ItrOIMqqfvGsjUNY1S6sNOkgdliO7hesmKOVhc9FKoo3EDFKApXIAxXmV1qmq3FjZGO5 YBQ24J/EfSuz8KXL3OioZZN7gncc9D6UWC5t7QBnFHGcEUrH5T9K5hdQuj4m1ODedscG5B6HHBoS uB0gaNiMEHjNLhOQcbhz17V5rpOqalp90Lm/nYiVH8pT1z24qroev6nPrFv505eOWUqWPTBPaq5H 3C6PUwwLY4z6Z5oM0YXJdQp4znrXF65q95YeKDHbo0rvD8iDtx1rn72+u5rDTAZZQ7O42p3J7Ucj C6PVldWHGMfWngYBrn/CsV+mm5v1YOT8qt1xWveTPBbSyRjLqhZfqBU6jJC6biuRu9D1oaRVznH1 rzLw7q95Jr6SXlw7I0hXB7nPAFdB4gmmu9c07T47kw27KWk2dW9qrlYrnWq4ZcqQR7UAg8g5HqK4 q2ur77LrFnYSF2iYCOTrS2+o6lo3hm4udR4uS+2AE8nPelyBdHaKwboe2aVjgj3rE8P6nDc2sdu1 ys1yFBkPpU3iLU5NN04NbkG5ndUiHoScfpS5QuauQOpGKyNR8RWWnagLOQ5m4JUclR71BBo+ob1k n1FzkBnXt9K57xBZ3Vtq11eRxNK06hVO3J47VSj3Hc6O+8TWVjPDDJuMsyB1UDtVuXWLeDSxqE4M cWARkdc1yGqWV39t0yeUPuS3w20Z59Kua8l7q2m2NjZW8nls+XLenvT5UTc6C88QWdnpiXrtlHba F9afpWtW2q7hCdpXqpFcdPpWpz6VDpzwn5ZwRIf4RW34Y0p9LvL4SeZIG24duMUnFdA5mdFd3Udt aSTsflRSx/AVj6b4psdRkMaEg4OMinajfrepqOmRr+9WM7QByciuL0XRb5NWtytrNsUMZHJwtNRQ 7nW2HiqHUb429tA7AMVLEY6VoPrlmNaOmBv3qjLAdM1yPh+C4028cyW00jM7EKB8v51XXRtYbVJd YdSHMpwg64o5ULmZ0B8Z241F7Xyiqq+wufWtK68Q2sEd62Sfs+3OB61xz+GLyVpL2RGEhnVxH7Vo 3+kXk8erBIjiVUCD1OKOVBzM6CHxFZTyxorjJjLnnoB61X03xRBqV4Yo42CliFYj72K5vTvDF3Za qB8zRNbMHb0JHSpNN0zU7bWrWKOFhbwElnxwQTzT5UHMz0Ac1jweIbSfWZLEcGMcn1rRdnSEsOSF OB71wVt4c1aC+fUdxWR5eVHcZqUu42zpD4ssAsjFsMr7AO+c4plz4njg1P7IkMjbVDuw5C1zVz4U u5HN1hvMa43bO23/ABrQ1Cx1KK/untbXc1zEse4/w8Yp8qFzM7C0ukurdZkbIcZBrK1/X10cwhYW kaQ8AVd0mzks9NtreU/Oifr3rM8QaNLq9/Zg5EUf3iO9SrX1KvoWrfWyYbUzwmN7gkAVcutTitbu 3t3HzStgGsjWbKaE2bWcJk8hs7aguV1O7EF69rtkhYkJ3NVZBc028QwBHYqfll8ris2bxa8WoTwi 3Zkg4kbHC1Xt9Hv5tN3ToFuJboSOB0AzxUN1pOqyXl5DBCBHdsN8h7L0pcqFdnZWk4urVJkPDjNT gd6r2sP2a2jhzkIoHNTHPaosUPApaYuafQO5meJP+RX1f/rym/8AQDRR4k/5FfV/+vKb/wBANFa0 9jOZqZ5paUjNJWZYUmaXtTaCRcUlO6imn0oAjnP7lv8AdNctod/Hp2iySSMdxnYIEGSTntXTz58h /wDdNc94Xs4JrczuocxyMEU9B7/WiO4GjY2U1zcC/vlAYj9zbjlYx6/U1qsRx7c5PagsQMenf+lY WqanNLc/2bph3XR/1jgZEQPcn1pt30QBqeqTyXX9maaA103+scdIge5Na9sn2e2jjZyxUfM59e9V tK0uDS7Uoo3O/wA0sr/edvX6VcmlS3jaSRgioNzMei/WiWisArzLEjO/yhBls9hXNbJfE8/R4tKi b6Gdv8KlCy+IrjktHpUZzjODOfX6V0UapFGoQBFUYUDjA9BQrJXYDURIY0jQBUQAKvtWXretDTFj jiQzXs4IhiAzn3+lLq+sDT0SGFfNvJs+VGvJPufQU3R9H+yM95fOZ76Tl3bnAPYemKEm9XsAzRNH msmmvb2UyXU+GfPRPYVsYyATmnHG0kZAPPrmuevr+XVbmTS9NbA4FzcL/D7D3obu7IB8+qve6r9g 06ISiNgLiU/djHfn1rVextmQeZGhOOTtpthY2+mWywwqFUD5m757nPepJ7hLaMyzOI1Xks3ahtLQ LGfd6Tp8cTTSjy0UZbnGKy7HTINRtWuLS4lSEsQjH+LHpT0W48TzeZIrRaPE3C9DMw7n2ro4okji RUUKqDCgDAUegFNuyA59dF1GMny9RYL6GlkttXtTg3KFsgAN3J6Vr6hqMOmWzXE5wFOAo+8T2A9a zNMsri/uF1bUlZccWtvniMHufU0J6XAYU8QAZ/dVIsev5CkQ5PTmt0hR2GR2rN1TVY7FUhhjFxdz g+VAOrD19gO9K/ZAZrTayJ0gLwiRwSF74HWpmj1tUyXiwOas6RpLW7NeXshmv5+ZHb+EdlA9qtap ItvplxMSAFjY8j0BpvQWph6bPrWpWZud0aJuwoxyRmrTW+sFyguItw7VkaFrQtvDtvbWf7zUHZhG nXZk9TXRaPpslhCWuJTLdTfNI57ewosFysbTWsc3CUfZNYB5uE49q2zgdcY78Vh6pqc0twNN0shr x+XfHywr6k+tSrMYiwapLI0YvELr1AGcVJ9g1gc/bF/Krml6ZDpVkI4yzMTukdjkuT1Jq6zKoYtj A6mhuwWMOWx1ZUYm/QYGSSPu/Wq1nbalfReZFqIZMkAgdcdcVJO8viSZre3do9LRsTSjgykfwj1H rW7bwRWtukEEapGgwqKOn40J9WFjEOkaqemon/vmoZdN1GJkEuqbS7BV46mtrUtUg0y1MsrMzE4j jUZaQ+wrO0jTp57v+2NTP+kkEQRAnbCn9SaI6hYryeH7+cYl1WUL3C1JF4OsCwa4kknKkf6w5ro8 H2rJ1bU5YZUs7FfO1GcEqg58serelNSfQLEN7dx6YItN0u3Q3kwJSMDhB6tirmk6SmmQl5JfOuXO 6aZuCx9PYD0o0nSk06J5JH8y8mIa4mbq5/oBVPVPECQyfY9PQXGoSn5Y15C+7Um+iCxc1TVbbS7c yXJLMThYx95s+grKt9NvNcuI7/Vx5duD+6tVPBHYmrOl6CYpvt+pyG6v5Bnc3Kxj0Arc6EEE5xjP tReyt1AYqBECKFVFGFUcAVzV94NtbqeW6DMLiRy24np6V1GOteeeI/FWpWOvXFtE6eVGAQMc0Ju+ grI377wvDe3dhNLKT9l29vv4PT6VHdeELa9vrq8uXLyy4CrnhQKx9Y8S6hBaaWYH2faoyzZxmrl7 qeq2egWnlOrXt1JsU46D1NV7waGgfDQMsbm4LGO3MPPfPf8ACq0Xhe+Sz+xrqLLBtIKKOuetMu9Y 1LSdHvPOaJrwMiRcZ5bikj1HVbOdbSeRHuJ4d4xxjI9qPeDQkg8DWdusHlSyeYhyznr9KhTwLH9r EstyWiWXzPLHc1Fa+Jrq+vLDT4c/adxa546AGqOm6pqmoeI5LRrsiJZ9pAXtnmn74aG8vhaSK7ml tr54I3cEqtLd+FGuL5buO5eOTygpfGS3Nctq3iPUbbWr6NJnKQsqhFH862tZ1nWtLs4riNQXnjWN MdAT3pahodfZW5t7SOJmMrAcsetSyKWjI9qrabHPDp0K3Mu+YjdI3oTzxWb4oluYtMMlrIRIGAUD qxqLNsZe0zTINLtzbwDGXZnbHzMevNZdx4Usry+82SRxGzbmiB4JHrXN3Ot6o3hdSszC6ExFww6o DwBTdP8AEmp3OhaiEc+fFja5HQVXKxaHbHRbN7p7koC5hEKjsg9qsadYx6faC3ibOOue3Ncv4Ov7 w3M1vqUxe4cBlVv4RWNqGv6jbPrFrCZGdXzvH8C0NN6BoektKgUEsBkZ60dRn8q8w1e8vpbzTVjl lLPa5EadWNd34cS9GjRfbxiYevpS5Wh3RqdeCMj09a5PU/DltqOtS3N9dN5k64hiXsBXXAYOa5q5 2zeOrFc7hBbMxX69j70oXuBnXvhCeSW0kSRXMAI/eLn6Voy+HpL+zs4r6QN5MqyOFGM4HAromdVj JJC47k4rGl8TWKSGG3LTzZ27Y1J5quZsLELeGovKvI0fbHMQVQDgEd6NK0GW11ZtRu7lp5Anlxrj hRTptT1PAZLEhMZJPGBVZNe1I3ZtRYkzBdzLkfL9aWotDo/JRX8xY1D/AN7vVC90pL7VbO7dyBak lR65qkdS1liANPGO/NJJqerRxPI1ioRBlmJ4FJKSGW30WOXV5NRchpDF5aZGcVlzeDI5Le3SObY0 Ll9x56+1LYa5qupW32iCx/dFiqs3G76VY+2a4TxZoPxqryQtBJPDguYIY7y4aYxyhycdh0GKLrwr b3MdxGXwk7KSo46Ur6jrEMfmTQRoo6lmxj2pfteuuMi2jAIyMnrT94NCra+B9Pt50kGTtff/AIVJ H4Pg+3xXM0zPFC29Ic/KD1FSeb4gwT5EXT1qK5vtbsrSW5njgWGMZYk9aLyHY6bIUL24xjtXPXfh gXOpSXaXbxNLjcFPWoLK98RX1mk/2ZIkflAx5IqwB4hP8MIpJNahcS58JQXIUGeSMFAsrKeXqS88 MW11Zw20TeSkKBVCHp6/nVLUdR1nTbcSTNFuc7Y0HJduwFW4l8QNGrN5KMVBPPrTvIWgxvCFlHYR 20TuqpkZzyc9a09J0uDSLMWsCkDO45PJNZxj8Q5J3xEelZ9rqGt3mpT2ts0ckcH+sl7K3pmlqw0O xI4571nf2RCL2e7J/eTRhD9KoCLxDyTJDillXWoYHlluIFijG5mPQCkroYy28J2kV19qnd5nVcRo x4XnrUdr4PsoNSjuixIiJKIOmaZp0utaha/aFmQKzELkdqteRrecCePNO7Cxof2Xbtfteuu6XYUB 9BUMGgWMDWzBQfJJKg+p71m3curWnkxyXkfmzH92gHLe4qX7NrhbH2pN3U8UJsLHQ8Y9SO5pr4dS PasEWmubsfbE59qqWy6zetJ5F6jBG2scUguX4PDFhFqC3gUlkO5AegPrS3Hhu1uAxLuspOfMB5+l QCw1wdb1PyqpMNUju4rV9RQSy8hAOQPWqu+4WN3TNJt9KtvItlxnJZj1aodU0KDVZrdrhmZIB8q+ prQt1kjgRJX3yAct61LU9bj0MHRvDNto13NdR7jJJ19AKjmQar4uWNuYdPTzD/10Patu7nW2spZ5 GwiKSfyrK8KwSDTGu7hf9IvHMzn05wKafUVjdxwOc+uaz7/UrGxkRbmRfMb7qN1rQIOBjmuL16GK HxMt/fRGSBIiABzzj+dC13A6ea/so7NbuWRFhPRm9aWPULRrfz0kUIDgHp1rjbuJ9QsNLmuIGjtU kLGMeme9QTCW9ivp7WKRbKOaMIMYzg81XKK53jXVvHv3yD5V3nntVa317T7vd5U6nA3EjuK5HzH1 DUNXkhjc2622xSQQCdvIFN0nw7cf2a1/NujiWBhHEOv1NHKFztLVLVmfUIsbpRy5HOKRtVs1iWTz FCFtox61g6Fq0K6RDZPu80KykbeprEurG6n8OQwIjiY3JII7c8UuVhc7r7fZh5GEifuk3MfQGo7H WLLUiRBJuAzjHf6VwOn6XqEltrFvNvLkIC3POPSrvhPzx4hdBCUQJt2gcLjrT5Qud9LMlvC00pG2 MEsT6VFb3kElmLoOBCFLbj6VW1qMyaJdKqsXZGAx9K5i31AXXhv+y0jkNx5bLwuMUraFHQ2XiGwv ZykMnHOCRxxSQeJNOuL37NC+5w+0keorlrSJrifTNPtbaSIQhmuJMYqC2tDba9CLa3lLNMSzY4Az 1p2RNzsX8S6cb5rMSgyK204HGfStkNlQeqkda83voWg1wy29o7SNKGPHU16HCXMS7lw2wZHpUtdi l5kF7fQafGZ52IUdqqxeILB7CS8Ev7pDhjjv2pdfx/ZjhkLK/BwMkCuJtLSWfRbuMxSpbGTIGDnj vVJXQrnc2et2l7by3UUgMUfVvWmN4isljgcsB5mQB3rnvDsMgsNRgihkS3VcRh+Mkis2Pw7fpHYz uJGkZ2IjJ+6ue9HKFzq7PxVY31yIY84JwDjrW3kMNxJxiuN8PeF3/dXd67ho3by4xwB7muvZP3RU dNpFS0hrzIra/t7pXdHyqEgn6VRtPEVnd6g1lGW88H7pGDiqWimXTLC5aaB/mmOExy3NZlvDPJ4k hntrR1kbJmkPQCqtqK5082uWUF39meZRJ3z2qa01GC9QvA4ZAcZrlvFWgxOrXkaSNdykKu2ofDVx qsNxHYyWpSFepA/nS5bxuh3O7U9KfTEB2jNPqBmZ4k/5FfV/+vKb/wBANFHiT/kV9X/68pv/AEA0 VrT2JqGtmkNFFZjA9KZmnnpSYoEAPFNPqKWg5A460AUtVneDTJ3RcuqnA98Vz/gW6efTpA6lQkrF vrXT3iB7aUHHzKev0ritBuLn+yWsNPXFzJM/mSEcRD396qGqYHQ6jqc09yunaaQ1weZHHSIep96v abp8OmWxSLlm+aV26u3qTUem6XBpdsUjUl3O6R2PLt6mrctwlvbvNI2xEBJc9BSbtoA+SVYoy8jq ioMsT/CPeueCT+I5xvDRaXE2Qg6zEdz7Uq7/ABBOshDRaah4ToZm9T7VvoEjCpEuxFACqKErasBE RI41RVVEQcKvRazdV1VrIRRwoJr2Y4iix1HqR6VJqWrLZbLe3UT3kvMcQHX3PoKTStJNmXubpzNf y8vI3of4R6UkrvUCPSdINo7Xl2fNvpeXc9h6Y7YrVJx22k/jmn5CrngfjzXN3t7c6vcvp2lNsjQ4 ubkdE9R9aer0QBf38+p3cmlaWxCpxcXA/hB6ge9bFhZW+nWkdvAgVE798nqSe9JY2MGnWiQW67VQ de5J65PfNS3E8VnC808gijQbmc9BQ3pZALPMlujSzOI0QZZ26L9a5wQzeKLgyTI8WmQt8sR4Mx9T 7VJDDceI7hbm4DRaZG2Y4j/y3I/iPtXQqojRUVQAowFHAFNaLUAVUjjVFGFRdqgDAA+lVdQ1KDTL Rp5GyRwqDqzdgPWjUdQh061eaVjx8qqvVmPQAd6zNP06XULoajqcYyOYLY/dhHr7mkve1ASx0+bU rlNT1QA7P+Pa1/hjHqfU10BcA7icEjmkA4HBwOhrM1TV1stlvAnnXsp/dxKMk+59BTeuiATVdW+w LHDCglvJv9VEOp9z6Ck0nSDZyPeXcnnX0nLu3RB6L6Cl0nSPsjtdXTmW+m5eV+w9B6YrUVifYHkn 1xS0iAAgk7VI/rXP+KLzdZNp0C+bcXQIVB/COhJ9Kt6lqrW8i2lqPOv5OFjH8A/vH0ApLHS/sFvP PPL5t9MC00p5J9APQUktLsDM8D6TFZaT9oA3XMpO5iOg9BXU8AdO4zWL4WcHQ02nOXbB7nml1PUJ 5pm0zTfmuW/1kg6RD1J9abbYlYZqOpzS3Y03TAv2lgTI/URD1PvV7S9Mh0y08uPLyOd0kh+85Pqa NM0y30y3EUSlnbmR2+87epNXWdERi5wAMnPYUNpaIYpOwMWOAoyfauclmm8S3T21u5j0yJtssy8G b1Ue1LK83iKURRM0WmRthpBwZT/dHtXQQxRwRLFGioiABFUYCjvS21YCQ28VtbpDEgWOMYRRwFH9 arajqMGm2xkl+ZjwkS/ec9gPrS6nqcGl23mzZ3sdscYGWdj0AHuaz9L02W4uf7V1MA3Df6hDyIF9 AO5oWurAqacEe+/tLWbqL7W3+qjzlYl9MetbTa1Y7lP2hMHjqKa2g2DyNM1srO/VjWVqljpsLC1t LSOW/l+6mPuD+8fYU9GgJNY8VWVnGEtnWW8lIUDORH6Fqz4td0fQIpJHle6vZ/mmZfvOew9sVq6Z 4T06wtVWWJZZmyzOw5J9PpU1x4b012L/AGdFbgjHehWQGZu1zX1UIVsbMjORy7CtrS9FtNLjxBGS 55eRjlmP1rAt1me+mi0q4aWK34lbPAPYCtBNbmt/lvLZxtP3wKVnb3QN/wBuAP1oqja6va3SZWRf xq6GBGQeDS2GGDXNXHhSO71O9vJm3NOu1cj7vFdNRnrzQnZ3E9Tj9S8KTXCWOyRd1qm0bl461ebQ rqbT0Wa4BnjfdGwXAHpxXQ7gcAYpcHPJp8zCxzUHhVUsLoTzme6mYMXI4GPan6T4fkttSk1C9nM0 5Ty0TGAFqbVtRmtdS063T7k0mDjqeawfFHiya11OHT7NsLGR5znvk9BT5mwsb+n+G7ex1e61LfmW YYC4+6KoweFp7fUJJ4rvylkkLsFXkg9q2Jb5v7Ee6tzvl8r5Pdsf41x3h/xLeHWobW5mMplY9egO elHvIWh0X/CM25+3Nkma6Iyze1XLzRUvILWGSQ7YHD4Pt0rN8VajqlgluunwmRScue/4VWi8STPq 1pYzMsflxb7ok8huyiklINDrjkHj/PFZmr6S2pxIonaMx5xitGORJYhIjZU85FYtzr8trdNE9pII gwUSYHOfxpK7egyFPClvHpMlisjsZXDySHqxp1p4TtrLTZ7SGRw0+C8hPIINb6sdo45PWnDnNHMw sYWk+HLfSrqW6LtNcy8NI3YegqRvD1oyXgYfNeH943t6VrkZpcHjAz9KLsLGbb6HaW97DcouXhh8 qPPp3rSx6jp+lNd1VcscDp1rFvPEttDKbexja7uPu7YhnB9z2o1YWNtioQsWAXH3uwry2TUrgePp 5bMNcb3GFQ9VHb2rpb6DUZbd73Vpmjt14S0gOC57KT79KyNEmi0q/u5Ybbz7ubiOGHnyx6F6qKsJ s3n0e+1aMz61d+XB/DBEdoA/2j3pkOq6Zpn+h6VbGd14PlDPPuaI9G1XWZhcaxcmK2/htYzj8z3r YaG10XT3lt7dEVByEHJ+tDstxlM3etXEJKWyQkjhm5K1Q0uz1jTll/dJJNM5lllbq7f4Uy58cWtv M6+XnagIXuWPAH51qDXGOoPaGP5kthOffI4FGvYWg4HWzn5I1qve2msX9q9tK0axP94DuO4NUbfx tBcx26hD5ss2zAPIFTT+JLtdWvYEtgYLUAu+enGaLPsO5cgt9XgjSOPyo44xhcD7o9BTtmsk5Eke PeqWteKBYw2LQruNyN/HQL3NP1jxEbSCwS1g864ul39eFHcmlZvoLQjvND1XUZrdrm5DRwMHEe3A Yg5Gaui21gkg3MQA+78vQVmz+KJ08NyagkamTzAijd19cVa8Male6rHJPcbVjTsD1p2fYNCwbTWe 11H/AN81Bc6NqF6iLc3KFVYNt28ZFdCxVMlhwOprktG8VNqOsXFs4AVGIT3xQrvZDuan2PVi2Bdx jgAYXjA7U8WWpkf8fiZ/3elcw/jeRVmhKgTLceWv0zVqTxBqcmr3MUSoILeISSHPsD/WizFoac2g 3ct1HcPcIzRDCjbkfX61Z/szUsgNfLzz92r2n3X22yjuOQGHNZfibVrnTbe2isow9zPJsUk9D70r vYdiRtM1BkI+34DAjIX9agsfD89hb+TbXgSPcWxjuep96qXOr6hp2j3PmhGvgypGoPTdxSRa1eaW JYNQKyS/ZzOoB647U0pIWhq/2de7SPt3P+50qvd6Dc3kLQz3ztE3UAdRWbYa1qi/Y7y+K+XeNhY/ Qdq1fD+pT6it20xA8uUotFmO46PSbuKJYo7zYgGNqr1FDaVd5wL5s9sCs+91y5hn1cAAC1jzGO4B FU9L8VyX2pWFuRlRGzSe5FOzC5qyeHHlvVupL0tLENqZH3PpU39iXZw39oPnvxXLW/ibUH1KGSeU LBNOUSL+6Ae9ehhgURjnG3PFGq3C5hNoV2QR/aDn2xTYPD89rCI4b47AcgAdSaXQr64u7i/EpP7m XYvoayLi/wBTvtW1F7ebyrWxHC/3vWjULmw2iX27/kJHn2qKz8NG11P7b9raSQdWYZJHcfSsfXNa 1IWemyW8hSOVTnHViKsrq17J4Jku4Jc3AOGY/wAIoswudiBnBHOBRXGeDdUubq4ljvZyzgZAP867 LdgZHOO1S00BheIy101ppcR+a7kDSeyA8/pW7HGscYROFUbQPYCsDSQdS12/1M8xRt9mg/3RyTXQ gYoe1gEIOKjktobgASxgqOxGfxqaopZvLA3EDdwBnk0XGK8UciBHVWXGMY4FIlvHHH5aoojB4UDg /Wo3njiBZ5VAU4JzTRf22zeZ02euaV2Mljtoo08tYlEfJIHf60/y18oIFG0LtC9qZHdQzcRyKzeg NSlwsZZuAPWi4aEK2luj5SFVOOtSGGMAKEAA/Sq8eqWUsqxpcIzH0NTiZHUMGGD0OetPUQLDGobC LlvvH1pUhjiZjGqgH2waqPqlok7QGdPMU4IzRLqlpBMIZJ1WQjIUmjULousMjbgFfSo1giXP7pB9 Kj+1w/8APVfu7+vakW+t2CETLiQ4XnrTV0GhKsYRiygAnrgYoWNA2QmD61R/t3TvtX2YXKtLnGBW kMFdwIIpaj0GiJBztUH1A5pQ3GPfOajuruCziMk8iqnTJqCHU7O4iaSKZWVQSfagWhbYIwwy5HpS COPaRs+X07VSt9YsbmcQw3Cs/oKItYtJ7k28U6tIDgqDTV0PQvLGoBAHynkjpTtoxnAz6+n0qhJq 1lHd/ZvtCGUdVB6VML+2HmfvlxGMuc9KWpNyydvGM8DgU0jjkcVmXevadasokuVDMMgU+bXbGBYz LOqb/ug9TQO6NDGe30GOBShEBYhRk9+lZlzr9ha2qXE1wqxycKajPiOxFn9paULEW2gnvRZj0Ncq pYMQMj8abtAzgAe4HJqvYX9vfwmWCQOoOKuDBo6WCw2NT3PFSUcdqKVwMzxJ/wAivq//AF5Tf+gG ijxJ/wAivq//AF5Tf+gGitaexEzVooorMsKQml46ZFNYHNAhNwBokkCKXwSAM4ppG4A469qMjoMf jRcRzV14hvQsyJpsjgZ28cH9ayfDurzWtrPFHZNJIJiZNo7/AF9q7kxrhhtzkdMVl6LYyWUU4mAz LMXAx2q4tIWrKY12+JydNk9qzL271TUrqJZrGRbOP5ii9XPofau2wu3kfpTCOcYHtUppDsc6ur6g ECR6U6oowig8CntrGpsmP7Nb3roF6YxmlGMdKLpi1OSt7rUIbmW6fTXkuJfvSMeRjoB6CrI1vVhj OmsB1OOprpM+1L2p3VrDsc5Nq11dWrRSWskAYEMyjnHenWGrabYwrBFAYUHOAD19Se9bzrk8j9aj e1hcfNGpP0ougK0eu2Tc+eqY7sOlZMUh8QXIluD5emQsRFGT/rW9WrYfSLOXloVz9KqyeH7bAEbv GB02mloLU00ljChYwoC4ChfSodRv4NPtmllJPOFRerk9AKzRoEqHMV7J7ZqJ9H1ATxyGUS+X91H6 Z9aLX6jJrHT5b26TVNUG6b/lhb/wQr7epraBPrwKxfO1iAEPCsg9jz9Khl1y7tkO+xJbHA7U5LSw XL2q6q1oEt7eJZr6YlY4z9Op9BTtL0wWe6e4bzr2b5pJDxj2HoKxdIvLa2MlxcM7Xk3M0rDvnoPQ VrjXNPIx5wT3NGyC5pg7hwMLnk1larqzW7paWcSzX8o+WIn7q9yfQVU1LxJFHGsWn7JLuY4QMcKv ual0mCz02JmkuhJcy/PLM5G5j6ewFJK+4XLWm6atiGlkczXko3SzMPmPt7AVLq286ZciM7WMZGR1 HFO+32pPFwmfXNY+u6urW/2OyeMyyqS8hP8Aqx3P1pPVhcwvCt/dzaONPsiTcMx3yAcQrnk59a7P T7CDTbbyogSzfNLIfvSN6msLwhcWVjoMUO+NTkk+rnP3ia3f7Vsh/wAt0/OqkSWXZUUlmCqBkk8Y rG819fdol3R6ahwZBwZT3A9qj1Sa31aZIJLxUs/vShWwzkdvpV+LUdPghVI5o1VV2gA8KPapS0KL 0USRRqkS7QowFUcD2FVtS1ODTbbzZG3O3ESLyXbsAPrUR1uxVWIlDEDO0Hr7Vl2U1s9/Jqep3CPc ZxFGOVjX296NwLmm6bNc3I1XU23Tt/qYzysC+3vW4OQDzz69qy28Qaf3nH5VQ1XxXaWcH+ikTXTn CAjgfWm03oBf1bVmtZhZ2aCa/lGVjJ4Ve5PoKl0zTlsEMsrma8kBaWdx8ze3sBWRpN7pmnQl5Lkz XU3zzSuOSfT2ArQPiTTMFvtHtnFLVaILmtvwcseo4J9K529vZtcvpNL052jgX/j7uk52/wCyv1qp rPiKC8gW1t7v7Okp/fygchfRfwq7p2r6PY2ccFu+yJB8uB1z1JPfNCXVga1hY2+mWkdtbR7Y4weB 1JPUk96lmjjaJjKFVR1Y4xUEGpWsw3pMuOvJrClkm8UXDwQM0OkRNiWUcGc91HtSswuLaw2mtXc5 s4THbRHaZxwHb2qw1lqVjk20xkQc7WrbghjhiWKFFWNQAqqMAYpLu5htLV553EcaDLEnpQ3bYDGT X3tMC/i8ticVdGv2JO0yqOO9ZdtaS+IbyO/vIjFp8R/0aBhy5H8Tf0rZm0exmDAwKM8celN8ttRa j47+1lGUmjP41KbiIcGRQewz1FYlzomnafbSTSStCi8s2eg/xrO0XQTfNLfTm4jtmOLeNn5I/vGl brcNTcvrS1vNQtbhpgBA24AHvWfq2g6XqKspZEd2BZ88mrw8O2gOS8nHvVfUdO0vTrZ5rtnUL/CD yT6D1pryYyfybePakV2I4o4vLjXseOv1rK0fQNM0vUDfSXQklXOwE8DNWNJ0j7XBJeXkDQmY/JFn 7ijp+JrRGgWOcFD+LU+bUmxO19aMp/fRlh0ya4278JWc8bP/AGkPtEshkkkDdz2/AVr6nBpumiK2 jgaS8nP7uIHJ+p9BWlHoVmIVMkIVtuXx2NLYLDrO4srHT4rb7WriNcbm6msvxPqtp/Za7Zk3GZMD 8a1f7DsOnlc+5rg/FD2UyrbafATbK4E9x1HXBAppKTHqd/FrNkIlDXCZ4zz7Un9sWIJP2lAPrVe2 0LTzbxP5CqCvIx14pZtK0m0ie4miRYoxuZj0FKSVw1JH1/TouWukB+tULvxZHnZYW0l3KegRT1+t c/DdaPqF8L64iS2sbYkRQ7cmU/3jWrB4uspZRbaRa+bMOm1dgX6mnZILkkdhqesIZtWuPstvnP2e IgEj/aNDavp2mn7LpFr9on+6RDzk+5p7aTqetcanOtraZ3fZ4ere5Petuw0+0sIljtoUQDuByfrS dt2GphnR9T1oeZq9w0FvkEW0J25+prZsdNtdPhWO2hVMckgYz9R3+tXsZxkjI68UoAApXY7CdV9/ TFQXUIubeWE8hxjFS/f4Xvmse28RWd3rL6ZbHzJEBJI9R70WuByMPgm5S6hmkZjuud7gjjYDwPrX TSabO/iC4vFyI/soiH1xS3Xiyzt76S2CsRE+xnx8uT6Grd/rENhLZRsA32ltuSau7FocrD4Lmt30 yRBiVZd8/sKt3ej6tNd6jDbKqQXjDe7HkDGK0Z/FdrHbajKil0syFyP4iadoniVNUuRAYdjMu4An tReQaGVe+Ebm9vEBnKwW1sIIh3I706fw5etp8GHJuYcqrd9vpXZOwRct6HPtVPTdRj1W2M8Ywgcp k9eKnnY7HKN4TuovCslkz75pZPMIx932Fa3hm0vrKLybiBIogO3UmoLvxraQ6yLBImc7ghPv09a2 NV1WHSNON3MDgYAUc8npTuxaEupxzz6dPFAcPIpUMO2RXL2PgqXTbi3njuGaXlpD61o2Hi+yv57W CHmW4Y7VA6Y65rosgcetJNxDRnFXPglXtyFbNw1x5jP6CpbjwzfvdXAjuPKgukVJcDkgAA/yNdcM 5yFGPWnFfmJ68dPSjmY7EFrbR2lnHax52IoH1PrVDW9NOoJE0R2zxSb0OK1QD2pGkWNC5ZVHcscU r63A5WLwpK1pcG8uWmu53DFugXHTFS2nhuR5bi61Kfz5ZI/JRMYVFz2/CprvxOrTPBpcDXco4ZgP lB+tZ7anqvPnT28BP8CHcRV3bFoWLXw5cG7ga8ut8FtgwxkcKQOKWDQb+2nlNvdeXFLKXZcdqy7r VLmGFmN8zy4OIwnWnWF3dSWiz3moMkrZ3KqnHtR7waGzN4fM8moySSnN3GsbfhTIPC9rb6nBdxvt EUezA7mqKXS4O7UJj9FrMvLqdr+CK3vJ/IHMr44p6iujWPg+B9WW5NywiRtyxj6811m9VAXIwq4X NcYrw4H+n3H/AHzVeeWNYHkS9umk52jB5PahpsasjYbQLqK7mkgv2iSaQuyDvSXfhf7VK+28kigk A81V6v61k2RWO3j+031y03JOFPHtU/nIScXd3jtwaNQ0NTU/D0d9BbxRTeUsC7VA/hFLb+HYIdBO lpMx3cs3vmsC+uHS1la1ubsyn7vB4PvSRSPsQPd3bSkZOAcZo1DQ6HRfC9tpVxLc+aZZnGASegq3 4gv3sdInkhx5z4jiHqTxUujRiOxQh3kLHJ39azbp/wC0fFFvbYzBYqZZPTzD0FLdjWhpaRZLp2lW 1sucKgLH1YnJzV15BGrM5wijLH2pVGe/XrXPeJbuYxQaXaMftF42Mj+FOhY1NrgJ/wAJUjSN5Nu8 kO4hZAvD49KxfE99ete6XNbK6yMCfL712dtawWdnFDHGPLjQKAR0xyT+Jpt7FaB457koGUlVZuMV Sa6C1Z5jc3l3eaLJJI8jP9qHy9D16V1un6RbTaF5bkmRRuOG6GtMabpM1q52r5Wd7EetWLG1sLe3 c27DY3DHdmjmQWZj+DLNYdNa4ZmeaWVgdx+6BXTTR+fAY2JwRjiq8Bs7KEwoyKFOTz60x9ZsFnMP 2hd6nBANJvyGcppulQReItUA3AW6/uxn1HWoItQk+zaZZidjdG4O5O+3Ndd9r0y2u5VMkfnvw3qa kg0uwW5+1pEpl/hYjpn0quYLHmmqW922p6hcQowCSj58nvUuvQsmsZ80/Jbq25j3x0FenCwtmVl8 kESHLgjqaqXGmafPcqskcbSld20jnAp8yFynE6fPPNIrAuf9BYnPTnIqhpi6hHqOmJNv8os2wH69 69HDaZBceR+7R8bQgxnbS3jabYrHLcmNNuVj3f0pcwuVnBeHIYh4iuXuCFAk43dSc16WSCAF4UjI xWba2Ol3LC6gjjfBDE471ae7t4rlofMAdF3EegqZMpGJ43haXQDGil2DjgdTXP6PY3VqNRW4BG22 O2IZwMr1rsLzWdNigiluJFKOeM+oqxaS2eoRGWLaxcYY45I9Kq+gXOO8IKiRzFtqztuCr1ao9Jkt LGe2URM+pSTsWPoM8Gu5g060t5N8UCB/722lFjbJcecsSB+zbeafMgscCzQ20N4ksTtqM03yYHPW p9es72KaC0t0bF5tEpHau5NpA0vmmNDJ2YrzUkiK8oZlBwcg96XMHKeea5ZRx+ILdc7IkhUFmGcG pNYtZdV1C2+yKcLCRvxxgCu8e0gn2tLEhI9s09IY0xtRVxwMDtRzBynmGoWDppWnxtuL7yHLDIrZ 1L7NNotkIo/NjjlUvha7R7WFwoaNSF9RTvIhCBBEgXPTbxS5h2Zy/hXzprq6uREYbY4VEIwK61aa FVV2KAE64AxThUyGOoopNwqQM3xJ/wAivq//AF5Tf+gGik8Rn/il9W/68pv/AEA0VtT2Ima1AOD9 KKKzLM/VdRGm2D3BXODzWLdeLY7fRYr8RkmRtoFaHiaGS40Z44ULux4WuOn0HU5PDccMkRBEoIVe wzRHrcVzej8TuNJfUJYSg3BV/GrsHiW2urgRJ0WPe35Vivplzf8Ah77Atu0eWA3N1NS6X4bl07V5 5VBeHycDP97HSteVXJuT6X4uGpaibdYWVd20ZGD9alvPFIisLy6EW5reQRgDrzWXZ6NqCa3G0cIi hViXc9SM9qlu9AuptJ1C3CENPMGUdyKmysGpe0TxOupvIjJh0XcRWtpWpDU7NrgjADlVH0rmfD2g 3tpezTywrHGIygAPJ471d0eLVLGMWYtwIy7NuPvTkl0DUqjxPe3WsyWdvAqojYJJ5rsIt21d2N23 muLg0a9stZubqO33mRgQSeBXaR5WMb+DgZ+tKySSQa3H7eaADk0oORkUvaoGMPWkzTiKUDNADQcU h5p+KTgigABxSlvUU2g80XAVsAHPb261GFUnkD8RWHd+LbC1mnh37pEbYqgclvarb6zDHfRWrBg8 ibzxTsxaF17aFwQYEx34GTUDaVZMcm3Ss0eK7E25kz83meWB3zUOpeLbfT75LRImd2UMcD1osw0L 8nhvTvNMpgG8dwe1CeG9PUMNjdf71UdQ8StYW8Us1rJh03sQOAPep4vESf2T/aFxC0aO4VARyaNQ 0LH/AAj2nDrEf++utJNoOniFiIQTgkjNVtS8TW9jdQ2qI0s7oHIUZ2j3rYs5xe2izFWUMOeKfvBo c74Z0SxfSBJJASSWHzHoM1rHQdOP/LvkfWl1jUYtA0nzxH8qkKFUep61naZ4ke8sri9kiKQQqW5H XAzRdy1DQ0/7E05SMWininDSNPwR9lTP0rHtvGFpcfZIk5lmJ47gVXtPF8l9qhtILVtofaWYUe8O 5vjR7HOfs0f0IqQaTYKu42qD2xXL3Xjf7LqVxbPBgRuF3Hp71e1HxZHaPbxRxM8skXmsMcKvrR7z C5tHSrHPFsmfpQulWJPFshx/FjkVlyeJoYrC2upkIidSWYdhV7QtTOsWRuxE0cRYhM8Ej1pahcs/ 2VY97ZPrik/sqyC8W0ec56VdHPajFK77hYz5dE0+ZNr20fXPAqQ6XZlQv2aIBRjgVcopXYGPc+Hb K4U4Upx/CcVVGn32mgJYuDGPurjp7fjXRDpijngZ4ouFjAXWrm1OLuBgf7wHSqcUy6/qhlupNljA w8m0P8bf3mrqJIkkGHRWHuKoT6Lay8qu189RxTuBeVkEY2gbQO3b2FNubuGyt3uLhwkcYy2e3t9a xn0zUbZj9mnLJ/dbpVO7GouYVvLc3EcZ3bVXqexP0pNXAsQWkuvzx3t4jJYxnMFsejn+83+Fb4Cq CBwOPwx2ArDXxGY2xNaSR9BjZ2qUeI4OSIJc9sJzQ72sBpahfQ6ZaPcXB2qpAA6liegHrmsiysJ9 RnXUtVUELxaW7fdQHufU1mW1+L+//tDULeTCHbbW+0lUHdj71snX4QRtt5M4xnb2p2stAubBPBIP bkjvWZqeqfYTFBABLdzkrCn97Hc+gqtN4g8qNjFaSs2DtG3qaz9Kuvsubm8t5ZdQmGZXIJxzwF9B QlfcLmxpGktau95dt5moT8yyNzx2A9K0zkqoxnOe/JrFOunacWswPqFzis3VtUvtQRbS1tpoYpCD cSKOdvcD6ilZsLly6nm1ydrGwlK2YbFzcr/F6qtU/FcdppPhpIkiVITLGCoHoeTV221MWdskMVjI qIMDCY+tY/iie51mzjgWwk2CRWY47A81QHUxahGmmLeznykVA77h90Y/nWRDBN4iuEurxGj0yM/u Lc8eYf7zVTnmur+7hFxZTCwtkXbAOkknqf8ACtIa9cbiq6dKFAwAF9PTmi1tUK5ebRrHBAtY8duK y9WtNO0yDz1jIkkO2FIxhnb0xVg6rqLgbdPdR3z1rKXULhNSe9vbGR7jG1DtyqL7D1oV+o7GjBp2 qQWCOs/788lTzgHtTo9Yu7Ubb6AgA/ex+tOHiSBWXzIZEDdSy1FqmtRTlLLT1Sa+uBld3SIf3jQ9 egXNW31W0ukykoz3yelW9wZODwe9YNv4VtoLOOMO/ncs0ueWY1G0OqaWryLKJLdOW3n7opWQzbu4 pZbOSKBtrsCA2elcJpvhbUNK8R23lybo2DNI7dcd66Sz8Rxy7VuImjLdCV4rYiuLedQ6uhJ6+tCv ET1OD1MTXPid1uLeRrKFw0UUYwGb1PrWz4i0iXWDpkUKFEWTcxHUKeMV06iPAbavuQM04ccrxRzB Y4OTw5NFbazb2ikLKyCHPOT3JrpNC8PW2jxiUKXunQBpG6j1FbQ9h06U0gdh+NDm2FhsvMTcZ4Nc /osN1pulCAwZkknZvopPWuj6jpSBVHPcd/SknYDzi+8MagNZlltowzSuGDnovPWu5uNNivdMS1vR vXYN2R3FaACnJ7+uaCMtyQRjoe9HOFjyq40jVdPvrq/023MS79sKAZIXpx9a7/TI759CjFy225Yc k/w1p7FPGOOv0pJHWNdzFQo/iJo5rglYwV03VoHYx3hdCcnd2qpqt34htLP9ykZI5z7VevvFNpBO LW2DXVx/chGaxby7nun26pcBFb7ljajLn/eNUl3C5U0zxhqk0zW/2E3E68YXp+fSqcGtXGs6lMmp eY6RnEdpD/GfTNdFaaRfXUYRIhptgeNqcu/uT61u2GkWOmx7bWFVb++RlveneItTEtNH1C9QF2XT 7UdIIhyR7mtiy0OxsQTHArOervyTWiF9eT9adjipuOxV+wW24uYI2b1Ip32W3wAIUH/AanwaTBHO KV2BAbSDtEg/4CKFtLfbzCn/AHzU6gk5oIOelF2BAsEQJ/cx7f8Adp32eDH+pXb9KlxgdKQ88Ci7 AYYIQBtjUH6UCKPH3F/KnnoKDwM0XYxnlR4wEUDvxSiNCwyijHcClzx3/KlGD9KYFS/v7XTLXz7i UIqgnHc49Kz/AA1ARYyXkpBnupGkc+men6VznjfzdT16w0mA/OB8w9M9z7V2Wl2CaZp8UCEttUbi erGqa0ETyOIY3dyFVFLMT2FYGgRtqV9c61OCDKfKtweyL6fWrGvXBvZ4dEgbMly2+cj+GMdf0rZh hWGBIkVVVQAAOgx6UtUgHgZ69e1ch47E01vYpGpdpJcbVOM54xXYYqOa1gndC6BtnK57GlHQGec3 Glalbaakd7M0VvNcBnRW+6npU8eLm41KHTmcWkCAqwPVsV31xaQ3UQjmQMvpiorXTbS0heOCFUVz lgO5quZE8rPI7GTUdR1WGB5ZcTygMe2Aa1NItUXxPL5o+RJQcuetejRaTaQSI8UCKY87TjnnrTW0 SxafzmgBkznPvRzoOVnmmp2V1c6vqU8G7y4pAQxz39K9N0lSNNt8/Mdgzn1qT7DblXXylAcjdgda sqiooVRhQMAClKSZYbjniuXPmr42mbcxC2+AvbNdTjrUZtofPafYPNIxupR0EeUx/abfxEZ59zP5 3AzyeeB9K6nxBGkmtaZNeDNoq7nB6ZrqG0yzadZ2gRpAcgle9PuLO3ulCTRhlHIyOlVzIdmc54Um +03GoTQKRabwIge9ZuvWt9ceI547VyiNCd7e2ORXbwwQ2yBIIwka/dVRj8ad5cZJbYNxGM9zRzIL Hmdzp91eafo1sI2LF2BLDpz3rtfD2jNo9gY3k3uzZJPatdIIlwQgBT7nHSn9Pf603LSwuUaOtKRm jFLUFWEHFIRT+KSgBhJ4p4ORSYoxQAtFB7ClxQAlHTmgDNOxxQAZzSbTRjFLuFSBl+Ix/wAUvqx/ 6cpv/QDRR4kP/FMatj/nym/9ANFbU9iJmuOaQnrSrSHqTWZZT1O+TTrRrl1JVRzgVmP4ktU06K7l VlWRtqgirPiMKdJlVgSD2HWuZ1u1uNW8P20FpA6lXUDsfrQtbknR/wDCQ2LPKqyAiKIyNt+mao6d 4rttSmKRRt5aKWZiOMVzWm6DqFnNfq6MymEjcPXHSrvhuzewtJoDbyNMykFsVo4oVzYtPF9ndzeS qkZfaueCamm8UWUWpNZIxd04dgOF9q5ux8K3NvcWlzKpd/MLEDpjNM1LSNRi1GZbaAsJ5lkJC9Me 9JRV1cNTsLnxBY2jMZ2Cqq7snoau2Vwby1juAGG8HaD6VzutaNLewacgiDEMhl/MV0yLtiWM8DaB gcYxSasmGpDqd8mm2rTS5AU4wO5rNuPEtpa30cEoxmPeSelS+I7WW80p4YRlmIxXO6x4ZutS1DzB kLHb7c/7WKSS6jOr0rUl1S2NxH93dgfStCsLwpZTafoccM4O8McfSt0c0OyEr9QpM88UE0mOtIYE 8UgoooAXFIRgZo5xmgAnFKwHnT6BdnXbvUzCTHFNujTHWt+e2urnxHb3DREILdgx+taOoa7Z2F9F ZyENNIc4HQVK2rWsd49uxClU3lj0xWnNohOzPPD4Yvflutrc3PCe2etaOradcJ4kiuGileFI1BEa 5J9q6N/E1iljb3TcJM+2PI98Zq3d61a2wtjIR/pBGDj2zQpWDQoa3DNqPhkrHEVlcKoTvgUmvadN ceHbW0jT5l2cL2rU0zVIdUgaaIfKrFenpVW88Q2lrrEWmHBkYZJpXeqDQxtStL3TtWfULe18+Z4F iwecHGK6XSVuhYR/bAqzdSo6DNYer+ModN1RrRoidoBLYFaEPiCGaeyiQEm6UnPbg4o94NCLxjZS 3+itBCpMhcMAPasjSrK5TQbuxW1kjZoyNznqcVt+I9ej0O2ileLczttHftmp9C1STVbNrgwmJCRj I5NKOzB2ZyNh4PmsLvTpVcs4BaQ+g9KTRdNvdN1aWYWjyM0hAYngAnrXoWO35GuY13xUularHZLD vYqG4FNTeyHYyLnwfJeXF/eyBtzShol/nmp9f0O/bypbYZlaARMAO3pWpeeKPsNnZM1szXN3nbGv JHuaju/FqWmmPcNBmZHCOvcZoTkhaDZNCuP+ELXT5FVrkpge1dBplqbHTLa2OBsTkds1i+HfFMeu XLRrHtZRk+1dIeO5NJt9Q0HBjjFKAfWmds0qtUDHUUUmaAFozQelNAOc0AOoyAaaW4NIuSKAHEA+ opFxnkZpORSgd6AEMcZyWQGgRxAfcH5U4kdKax+cAduaAFEaf3Rx04pDGvXAx9KcDmhuhoGNCj0G KUnODgA/SgdKSgBSRjgc/SmjA9aCe1GKAHbRjOKbtVj8yg0KTnmnDrQIXb65+maNo7Dn60tICDQM CM4pCinqox9KC4FLnIoEV5LSG4UrIg/Ksmbw1bCRprX9zM3Ur3rcXikandhY50vq+nthgJogOeOc VSudTl1e+Fjdq9np64M3YyH0+hrsAqleRn61VubC3ukYSxKSaaYDESwu4lVdjIoAAz0ArOv9Js7e KS6e5e3jjBZuegFMk8POrhrO5aE9h1FUL6w1Ty4Bc/6TbwNv8rH3mHIJ/wAKFfuBasLXUJbUXVvc sqv/AKtXB5HqakH9vIzcROB3oXxIyAedYSocAHA4A+lSp4osep3Kc/3TTd7gI97q8ELNJFGoUckm nLdazJGGWFMEZHNY41WDWdVEl07w6batmKD/AJ6N6mt3+39PRPvdBgAdAKLabCuRJPrRz+4T86bL e6nBt8xYkLMFUE8knpxUj+KNPRCQzNgZIAOTWHpmowXN22r6iX+0ElYIedsKfTuTSUe6Ga89zrcN tJM0cWxFJIx1qnpGtavqtqbmOFAobao9RVjUPFFsunz/AGdHklZDsG3gNjj9a5nTdZeLw1b6dal4 5JJCskyDJCZyfxqlFPoK50Eeqa3dTyxQRQnYdpJORWHquoGLKavfyMoORDAuM/8A1q6Kx1fS9Osl t4gyqSCQwJLnuSaq6tY6XrqI3miMxg7eMDn1oWjDUxbGf7WgS1KaXadyMGST3z2rotNbQtKU+U6G VvmeVyCxPua5Cz0O5ur6ZrR2ezgO0uR98+g9q3rXRNNmfZMxSYcFWFVcR0B8RacDhbhST79ajfxL p0bbXmQN6ZHNU18I2JIIPPXp0pT4M095RIy7iOc46Vn7o9S2PEenkZ3ig+KNNHWQVF/wi9kBxmo2 8J2Dn5gcUWiGpPH4r0uVtscoZh2FObxFaZ4qKHwnptucomCe9Snw9ZtxlvyotENSB/FdhE4RmIYn AGacfE9ljOTj6UP4XsJJA7Ll16E08eHLLGCG/Oi0Q1Gr4mtG5UFvoKhk8Y2Ec3lNnf6A5q0PDtkq 8BgPY1H/AMItpit5gh+Y9SaLINSD/hLrMn7p/Kj/AISyyAJIbAGasjw1p/Xyz+dPHh7T8EeWSD1o 90NTPXxtp8gIQMSOtNbxnaKCwRjjnHrV9fDWmqCBABn0PWl/4RvTe8HH1p6BqZfha3mvNQu9duo8 PKdsOey109zNHaW8s8xwka7mJ6UkEMdtFHGihYk7Vg68W1XULfQonwp/fXXsByAfrT3Yx/hq3e4a fWbpWE13xGp/gjB4x9e9dFTEVYo1jQYRcBfZQKdmpbBeY7FGKaDzTWbmgY+lA70isD60pYdqkAzQ TikpCRmnYBc0uaQEGlxmiwXDNL1FJil6CmAHpSZo3A8U3PNIYtKOKTtSZpgPPtSZpNwooAfikpu6 nFhigAopM5pR0oAKXFJSHODQA05HPpS78jvQOmDQV44oAcDxTtwpnbFJyTigCU4x1FMpgU55PFP7 VIGZ4k58Mat/15zf+gGijxH/AMixq3/XlN/6AaK2p7ETNgcUZxzRRWZdireXEFvbtLc7dijJJ9+l V4tQspbcXCyJ5eQFI4FUvFcHm6HPGTtxt6VgXxtofB6rAC7odqbO5NENmSdi99ZosjNMihRl+aRL i3Miqm0O4yB3Irz22inh8L3KOjvdyOGJb9AKmR7/AEu8a6uXMsjWxwB0U44q+XUWh3kN7b3EjRwu GaPrg9KRr2DbJIHUeUcM2e/pXCeEBfWt+WuY3C3RLZNJcyPbWV5Y7XNxcXIKjuBmjl0Hc7V9YsYJ xC06+aRnbnmm32v2FhKPNnVeAcnpXD6tbx2l+JgryTbFA9T7Vua/aLcaTZObceYZI9wxzjIocBan T2V0l7bedGcoTxVlenTGetRwRpFbRoihQFUBQKeeKmS10BX6gfXJ46UhJ7UuOKcAGGKT1GNGSM0g OaVvl4pF70ALRRRmgAboKXOFprGlzkdKAPNdW0rVtS8Qz3yQsscPKH1xVzxDp+oXNlay26sLh1Eb 4HUHiuoutcsLS8NtLKA45wadda1p1pbR3M04VHJCn6U09Ascbq+hahe3Fnp9vGfs1pADux/F1NWp 7LUprHSkeAtJBJz9MYrpoNcsZ7aa6WTZCn33NTWGr2d9GzQSA7Mkn0HfNXd9hWOW8O317psBtWsJ G3yk7u3WsubQNYu9Vm1Z4yjhvkX1Fdza63pt1K0cMyHGQT707+2bI27zmceWjmPPbNTfW4WPP/Ee j311qrSC1d2aJR8o71qpZahpZ0qT7O0jRI25VHTJzW9P4q0u2vDbvIDL3wMn2qa98Q6fp6wfaJAr SKWXcOcVXM0gsc54jivtb0+zL2roBKCVA+bAGK6Hw2ZRZiJrZ4UQYyx5P4VPHrVhMkLh1w5wtWbD UbbUGmFswdYjhiOmam9gsXB1FcjqHh1tV8XC5mBFukWMjuRXWFsHGMmjIx0x3qVo7jOX17TriG9s 76zi8x7dNir14rEfw9qd/psstwhW5u7kOyD+Fa9DzweRS5znk+x70+ZhY5bw5oT6RrN0UjxAUHzH 1711PU0vyntj6Ug60m7glYUqe1Io5p2aaODmpAeelMHWnE8Ug9aAHUmcnAo3CkHBzmgAIxnNA9qG OaFoAQ80A4pxK4pufY0AB9aaoPJPWnDrSkelAADignNGKQ8UAA6UuMDNIDmqeqXw0/Tbi76iFNwH 949hQBaIOfumndRmuN07xXNfaTPcBR5sbcr6LU1z4uRZLgwKrQ29r5pb1c9B+dPlYXOq6c9R7U7v 7DmuMsPE0tx4cursBTcxkttB6Vo2+sTyaxYWrAbJYDI2D3xT5WFzpMjjPcUzOcY7jNYXi7W30XSv MhwbiSQKgPTHes278Qzjwa19CyiYbFYntk0lFhc64qOvNOXkVwWl+J72Ww1CSX78UBkUnvx2rqjf TDw+LpdvneUTnPfHFPlYXNMdRnigkda4bwlqN9q12slxcMyoCxUfXFdzxjrQ42ACfwGSDntSFgBm uV8Za7JppsoIGw0rGSX/AHRUl/c3F5oS39tdGJYoi/HcgZo5QudMCuTzyO1B+mVrF8Mw3A0tLi7n M8kw359BVnX3lh0aaS3Yh1O4AegpW6AXmSNuCAAfbtUX2K2Py+Sm7rnArzFfFup3t8Yy2wzyJGMd BzjitvUdbvLPU9VtohJLIIFwR/yzGOSarkYXR2BsbMAN5MSgjOcDBo+yWQBIiix64rz/AFK7vbh9 HRZZcS25LIvc1b8RC4sbPSYEuJQXJEgXksfSnysm52n2SzGcRREZ2k9qkFrbcHyE3HqdvSuPkMun aXp22Rw01wCwY84PNdn50ZjJQhyqAkCpd0VchmtYFt5G8lOh7VleFbW3Ph61dYkywZicd8k0tzrM zQTRpZy5wQvy98VY8OQS22h28EyhWReQPWnqkFjQ+x27HJhQn3FQz6bayKcxKDjtxV0U1jzUAYP9 m3OlxkWPMXJ8v1NZOoajbGF3vbdoblVO3aPvHsK7TJOMkge1VLzTra+jKSxgnscc1Sl3Cxhabear b2EMtyolV+cDsO1btpqNvcjCkCXuueayxY3mly74HM8Q/wCWbelY17dHUNStbKyQ28xO6aToAO9V a4tTuM5OBSHiueju77TTsnjM0QH3xyatxeIbByEdtr9ganlHc2OopvQ1TTWLFgcTr+JobVLPr56f nUgXB1oPFVBqdnjJmUD3NM/texZsC4TP1p2YXLpPFL1ArObWLBc5uFz39qT+2rBc5uU4o1A0ScGl HNZf9vaaWH+kr1pX8QaamCbgDNFgNPFGeayD4l03/n5H5Un/AAkmmbSTcYAGTkdKdguUPGWtS6Ra QGAgyu+dvqBVTwTdi6a5l+aW4lO6ecj8lBrMuoz4z8VhYMjT7ZQrN0yOv513lpZwWUCw28YjRccK MZ9zVfCgLP4UDrQGOaB1NSMB940pwTSdyaM80DsLj0oxijNJuzUgOBzSEd6BxQTVEiH1FOU0EgrS LQMfSMRjFGaQ80BcYAN3enBTntRS80AB6YptOPPem0DAeuaUMKFA96G68UBYdxSUZo7UCHKKDxSj pSHk0DEzRuzTiRimjFACHinA5pjGlQ8UBYfxTB1p1NB5oAcOaKTdzxmlqQMzxH/yLGrf9eU3/oBo pfEY/wCKX1b/AK8pv/QDRW1PYiZr0daTNLWZVyGe3juI9ko3LnJqsbOyt4UBjRY0ORkcVf4xk9K5 TxvMkWnRs8rou75VTqx9/alrfQLG95VrIpICFe9IqWc8jbQjHpgYJrjLZ76HwbcyLITNKCFUHJC4 /nVfwlcyQXLQPKXuHQtyT8v1rTl1sQd0GszNsVoxKPlAB7UyT7DFdfMYvOHAJxmuB01ZdO1yGeSZ pZJpCEjJyeTReQNZa9LezzszmUFYg2evpTS1VyrHf3KWMBE86R8EKrMO5omntGfEjp8i72BIwAOa wfF5nbQ7eSFSZS6FVx3zWKbe9WfU1uiZHktsnA6fL0FSouzA7e01azu5AIZlYkY4NXT61w3hPQbl Zbe/lbyUAOI8da7r0olHlQCSZCcUq/dGetIeaAcVICPkmgUvXmlGKADFHFO6g0ygBCMmgg9qXNHP brQB5l4o065v/FU62ynCwklh06VFrFq//CO6QoQu3mHfu6CvSpI7aIvLIFQuMFj39qZJbWMsPzIn lp93pj61SasBxVxaxy+E0tYW3KkitMyg80ltILtdQttMt3igEBQybcZOMGu1t1sjE0cAjKHqEH3q SF7GMvDG0ahjghG60cwuVnE2kMM9xpmn2Fuyypk3DAH9abPpFzJ4oh0td32Ev5z46cdc13irbWsy hQkckpI46nFMa4so1ln3pmP5WfP6UcwrHnd1bqvjW4mmTZCjqfu53Y6Ve8UWE+s6vZLbodghPzMu NldlbnTr9mePy5GPXoTVwwq0hYgZIx07Uc2lgszgoNNKeDLhfLk+0xFsPjk8dq6bwpYDTtAgXyir vlpSepNa7rDHEdyqsY5Oaht7+2uH8uOVSR/CD2pc7ZViyBnmjGetRzXcFvKkTuA7/dHrT3dUjaRm AVRk0rgG0UoGKow6zYzyKkU6szHAAI61aluIodokcBm6KTzRqBLS7Saj86MOq7xlhleetShhwOua kBNpo2mnUUAJjpSn2oooAbto2inUH0oAZR1PFLtNHQ9aAAqADTQM9zUlIR6UANo5oPFFABzQeaKK AE6EHtWT4h0qfV9L+xxSFA5G4/jWvSfp+NAHMad4SXTndYXJjdMOG7nFUE8EOdOnt/N2ieYOSTzt Bziu26cjrWXr+pyaXprTwQmaYsAF9KrmYWMVfBgt4riK3mYRSxlT65xVq60G8W+trizlVHgiCZK9 aTR/ENxqkdwiRAyxL1H3c46ZqDw94lu9R1Ce3njVViUkc/eI7Cq94WhPdeFZNWe2bUrpnELE7V4B zTH8JKulXFlDIVjkZdo9wartrmrL4ih0oxxsznc20n5Fz1PFW9a8R/2TrcMMp/cmIttAyWYDpS12 DQrWXg94YLvz7gs88XlKo6AVag0HUUtzby3Q8jbgDvXPXHi/UJNMtZUMcbTTMrkjoBXS+FdVn1O0 uHnQgKwCsR1+lN36hoM0nw5Ppsqbbj9yGyVA5I64rpDHwMUYJxg8U89hUNtjMC+8L2uo6s1/dfOQ m1FzwKmTRI4tHm09W+WXI9gDxWzTGIHOM47U+Z7BYr2dstjZQ2yHPlptOakuYlnieNgdrr3rzZ/F +pHXDCXVokl2ABenNd9qV1cW+jy3EA3XHlblGOM44oae4XMqz8Gafa3FvKFy0LGTk9TnNXjokBmv ZW5lu12uw9OmBXJaB4ovX1W3trtxKZWOcDpz0rc8WalqdhFbrpsROeXwM0/eFoWLnwxBcCArI6mK PYpDfnT7nw1bz28EbSOWiYsGZufaubtPHDrLJNeDbFDHtSMfedjxXX6NqX9q6Yl0I9iueAetJ8yD Qov4Yt5LVYHmlfa4YMzcjjHFXdM0qPTQxWSR2bjLNWhS4pOTY7DQAcjHFKpA4FKMD8aMAHNIAxRw TRmkHc0ALxTcc/Slo70AJnn+lUL7Sbe9X7oR+zLwa0eKSgDm0ttT09yqD7RCP4TzkVm2UZt7q6vt Wtd9xM3BVeI0HYCu2XvmkZUK4Kg/UVSl3Cxxn2nQ3cn7I+c/3SKbc3WjJbuYrKWSTB2qoPXtXYeR DtOIxmlW3gz/AKpQPYU7oDkIbjSRAhks5BIeqkHini40UEn7HJz1+U11vkR4+4o/CjyY/wDnmKOY VjgdQmt7i9tobexkS1Uh5n28tjsK0heaQvH9nuemPkNdWIYwfuAilMURP3KOYdjlGvdLVSV0x3bH C+X1PpVSwuovLllvNKYSO/yqqZAHau2ESA/dpwRF6LwaOYLM5I3tpn/kDtx/0zFZ2ozzXRgih0tk gDbpcIMnHYe1d8I0z92gxr2UAfSndC5TC8M2kdvZSOtuYmlfLhxz7YrfxSbcc4H4UZqW7jQoAzRx zQCD3opXKsJijijNGKQDuDSYAoDYpCc07AO4xTSM04KMUnemITFKFIpcYozQMMUlKTSUrCF4pKB1 p+RTGM/AUbTTtw9KKAAACkIzS0ZoAAAKQj0paKADtiiiigAPSkAxS0uKAGkA0uMUUDmgAzRilxRj jqKAEA5p2Mc02nE8VIGX4jYf8Ivq3/XlN/6AaKPEeP8AhF9W/wCvKb/0A0VtT2Ima2KWikzWYwJH 4VnajpNtqe03KbwOimtA9KrXUzpbuyfeCkj8qB3ILbTLa3tWgjTMX+eKZa6XY2zSPBEgkfv3x3FY Npqd0nhS7ud5a4DuFJ7Htiq+nTT2Mmnb7tpp7k5cE/dqkmydDpU0nTrW6NwkcfmkcORnFK+j2L3I uHhV3QjaSK5m5e4vdW1K4mujDDageWmcA+ua3NJvLi50BZ1GZCDs3d/Shp2Uh3NZ44pGCSKrBMYH pSGCFlZnjBZuCe+K82udV13T5/IuXCCdz8zdQK7zS9Str+BRDLvIUZPvRyu1wNJFAQBeAvQe1Jml HTim9DUgOpcU0nAozxmgAJ9KUcCm5yc04c0AOU8UvFRk88UAkmgBxFAHPWmFvmxS5oA4rx5HcbIb gTtHGn8KnqaztPuZLnwVdPeTSLCj8MPvN7Cu6v8ASrTUkC3KeYo5wTTG0izlsBY+Sq24OSg71V9A OU8Pi4i0e+vGmKtLGfIhzkoMcH61SgNvYWGnJFKz6lLIAy5ySd3OfbFdtZ6NZWBbyojl12tk5/Km 2+g2Ntc/aVhUzc4Y84p8yuLU53xPLfjW9MFkCZnUrg9FOOtYjCb/AIRTWYrje8guFz7n2r0p7aKS 5E7KNwJwe+MUw6damJ4/JXa7bnGPvGlzIZy3gzw/e2ji+uZNsTR/JD/WuzzQAoXaBwoAX2FLxSlK +wypqDxrYSmToFJx68V594buVsvEjmENMJcn1C+1ejyRJMhR1BU1BaaZZ2Tl4IVVz/FilHTcT1PN riTV4/EcF/fRybTJtjUdOvFejvPDMy2cvEjxbmX2xU81rBLKskkSsyfdJ7U828JnafYDIRjceoFO 6tYDj/D+lQXXiS+1DyBHBbN5USAdT3NWvEnh651XUIbxLpoY4l+Yg4AFdNGkcORHGFDMWYDuaJo0 nhaNx8pBzzRfqB5lZ+JRb6815KskkL/uos9Fx1P416bbSi5t45lGNwBrOk0DTXEQNsm2PkLjvWoM IAFUKoAAUdhTck0LUfSbhSZ5pPWsxjtwozTe2aB1oAf0pu7JFOPSm5FADqYV5704nim5agA5Bp2c imnrQT6UAB5oopSMUAJS4pueaXmgAooooACOKxfE+n3WpaT9mtpCjFs5Hf2rZDc0p9iRQBzWh6Ve adpktqkKx5Q/OPvMSKi0bw9fQaut7dSIEiQqkargH3NdVkkAEnihiWx7VXMwsZNjo5g8QX2qSEM8 6hV9h6foKS70GK812LUpcMIkKiMjIz2Nam5iQM8U+jmYWOTXwXETbrK+9I5zKR9e1dTFbRW8flxK EQY4AqTPuaXOaTdwsGM4xSkd6Ycg0uaQBmkoooA4ybwP5uotMlwY42fewxznNdHLYTPK7C4OzyvL Vfw61fye54pTwM0+Z2sFjltF8Gw6dqn2+SQuy52Ke2e9dFdQmWCQJgOVIDHtxU3OMk0EjFF2CVjh J/h4sjQr9oZT1lb+9k812tlaRWVjFbQrhIlwPf3qQ889/rQrc4puTegWHY5pSODTSwFG6pAX0pab 2zSAmgB2KTr0ppJJ4p3QUAGKKbvNLuFABmjNIOaXFACg4FHUUzmgEigBwHBFA4puTmjJpgPopmSB mjJxRYBcUopoJNKOlAx+RSUzmgEk0gH0UmaU9KdxAelJim80c0WGKVAPFKAc9RSDP40nJPPaiwyS kpu6nUgExzTsimk0nNUK4pz2NOU460zkHmlJ4+tAxxIPek96ZinqQaBaiE5pRzTW6jFOzgUALim5 55oBJoxk0ALShgBSUHpQMcDmlJApq8ikOc0CuOooHSigYUDmgUhPpQAo6049KjIIGaXJIoAdimk+ lHJ9qToaAAt2pVxSNilAOKAFNLjIpARnB604HtSsBl+Ix/xS+rf9eU3/AKAaKd4k/wCRX1f/AK8p v/QDRWtPYiZq9qbTiOKbWZQh6YqKRFkjZGzhhg1MRzTWHBNAjOg0m2isntFGY3JJz61XsfDVpZXo u8l5V4XceFrYQd6duFUnYLGHfeG7W9nZ5CwDn5wD1rXhgitraKCJQqRIFUU4nNKelK7tYLGJf+H7 bUbpp5vmk2lVBHAzU+j6HbaJbNHAMlzkk1oL96nscii7tYBc4FNPNL2pKQA3SlWkPNG7AoAU4Bpx HGR0qPkmnMTQAg604ECmZpQc0wFxzSU6m55pAPx8ppqcU1n7c0oOKABuTSkcCkPJpxYYoAQDmnYx TQ3Peg5JoAWij8KKAF4pO9HTmkzUgKetISPwozSYyKAFHAyKacswpc8UoxVAGMYpfX0oPJo6VIBS lTijIpc5oATHFJ3pcGgDNAC54ptLikHNAB2oopM54oAM07im4pScD6UAHSkOTQDu5p3FADcUtFHW gAyPWkyKTAHrRigBRjOaWhRSkYoASil2mkPFACYwc0ZpRSEcjFAC9qVaSgcUAB60UHmigApcUh4o GetAC8Uh6UA9TSZoACcjikpcUlACnHam4GaU9KbzQAuOQacRgUhPFITmgAzwaB0pMUvTigAxjmlJ GKD0pMUAC4JocDNC5XmmsCxzQA4dKM5FAHFBB7UAJjNM53GpMYFNIzjFACUAZpcULxTuAMOMUKOK VuelNAIouAd+KUsAM0AcmkK5BBouMcOVyKFGG5+tNACjAzQUzIGyaAJeMU0tjsaUHAppJNIdhN5o zzRjijHNUIAcnHpQD8xp3HbrTVHJNADsUo4FFITUgI3BoBzSsMn8Kao7VQ7CnmjsBS4owaBXExSr SYalAxQAnU049KQDBzRmgYA4pc802jvQFh1JkUtJigLC5xig9aQg4+lOTpzQFhe2aTNKfam0AODA UEgnikxRigBxHy00HFHNJigAPJByaU+uaMUFRgUBYQ84pUdTnB6UY45poXavygUAKOWzTh1pFFOx zSuBneJP+RX1f/rym/8AQDRR4k/5FfV/+vKb/wBANFa09iJmnmjvS4oxWZVxaYadmmnmgQ3OBQOR mlxxSUALxSUUA0AAAzS8Ug60u00AHFHFGKQc0ALxTcUp4ooABgUpwaSgdKAExSgYFFHagApCOKWl xQAwL604gYpM0tACYoIyaWgdaADFFB5PFFABk0maXvTiOKQDT0pMUtFFgEA5FPK8cUUmaAG4oAxT sUYpAJ05oPPNB5GKM4oAKXGKOBz3o3AigBdwpvORRRQA+mkelJzQMmgApB1zSjrSnHagBKaQS3tT 9vNLjGTQA0D0pcUg60u8HI5oATNKCBQcYpuaAHHBNBxikooAB0pwIIA702lxjmgBfWmnkUuetJQA DpRS7TRtNACDml2mlAxS0AN2mk6Yp9NI4oAQ80DpRQOtADgPlNMxTifSkoAKTFBYDNAORmgAxRil pM5oASkA5p2KTpzQA7FIcGkLjpg0CgAopCcnilPSgAPFIBzSHPHtTgc0AB9qTcPelpMUAAOaQ8Uq jFIetMA/ClOBSbjmg8miwBS5JpDxSigBueadtJFHGaUHAosA3aaUClPSk3YFFh3FI4ptHmE0daAu KRxSUYNFIdgHriheAfrSbielKtOwDqCQfwpCcU3kZNFhXHZoA5pFIyKC2W4pjH4pKTJpaBBuNHbN LxTScnigYvUUgHNAYAUZzQA7HFJtNJkg07NAriUoHekHWnd6Bi8EU3GKXvxS4oASkA5paUjilYAI xSUgPY0E4pgLS8UlFABSnpS7fcUjAnpQAnWlGOlAHFGKAHBcUUmD60ZzSsBmeIz/AMUvq3/XlN/6 AaKTxGP+KX1b/rym/wDQDRWtPYiZrZoJ7Umcc0md3NZlC0cetISOlMxxnnNAhxPpTScU0E5pcbs+ 1OwDhzTsACmLSMTniiwDu9O3Co8HGc0gJJpAS5FNJwaYSSwxQxAP3hQA8880maVSCOtRjO888U7A SHijjGcimHJNNZDwc8UgJcj1pMikwAuaYCcimBKOaQ5FML4PGaU5J/WkAZp4YYqMg4oAIFAEnbNL jjORURbccCpMACgA9aBzSZyKQZA549qAHd6cehqMZ3ZpSST7UAKCAOtHam4HvTlNACZozSN14o9f akAuaXmmjkZAo5HNFgH4qM53Uu7IoU880gH9eKXGBTe9OzQA2lxRilJGDzQA3tSr0oFIeKAAHk0U 0Hml3YoAdvA9aXORTNu45NK3TigApv060c4pV4zmgB3GOopCRimFckGlIA55oAcDxSZpAc0maAHZ pxYYpg5pSOKAFBzS4xg01RxzQM5zjigB+4UAg0wEEnFJznigCXNJmmjNPOMUAJuFKcYPNMPSk4oA M07FMpSTimAvWimjIFAz1pAB60vG3ikb1pVoATkigHihuKZk0AOyaWmk9DTu2aYDWxTs4FNbrQeg FIBAfmNOzTMYyaAD1oAdSjjvSUYFAC5pTxTcUgPODQA4nFJ70NQpyOhqgELAnoaWkwM0vagBCc0u cCm0uc0DDOaQNk4pQMUgxk0CHswApoOaGORQBgUDAYJxSg00cNmnDqaAFzSHiikJzSGItJyG9qUc UHk0yRScmlI4NNzgZ7UbiRmi4wHFKBg5pBzS55oACeafnIppxilWgQtNA5NOI4po9KAA0oHFBFKO lADT1p3bNNPFPHSgYgNLmgYwaSgYuaTf9aKNvegA3A8UpPFMH3qdigBFU5zTsZNICM4qKS4igwZZ FUEZ5NAFgDApDxUcU6TJvjcMvqKrXOpWlq4WedEJ7E0AXATSBsnFR21xFcx74XDL6g0PIkPzSOqr 6k0CuSk4oJOKijmjniEsbhkPORUD6nZq4iM6b/7ueaBlwEml701GBBI6etOoAzvEZ/4pfVv+vKb/ ANANFN8R/wDIsat/15Tf+gGitKexEzXxScAUuaTtWZZG52qW9Oa4V/HUwv5LeO2aRtxAAPYV3M3+ qb6GvKNK1G003xHdzXEe47mCjGTTpq8rMl6Hb6HrlzqDyGa1aJUBOCOtWNJ1l9QubiE25URk4Jpd H1K31K3eeGIoq5zlcZqloeuJqF9dxpAIo4Tktjk1VtWrC1OkB7d6GIB6iuOk8W3NxeXC2VoXitzh mxineGtbvte1WZnQJBGCMDpmiMWx3Oxz8tIMc0Y4xRipAY3yqSfSuRl8XSJqQtXtWVWbapJ5Ndgy 7hiuD8RxKfFemKAACw/nTjrJJgddquojTdJuLtl+4ua5mDxncTQrJHYSOD6D/wCvWl4yE0+hSQwI WMhAwPTNZ2l61DZww2tzZGFAAAzJ1NOKve4tTodHvZr60MssXk8/dNaTfdqKB0kjBjA2nkY71KxA UZ4zSk9bDEVgVpcCmhlxwRShlPRgaVguQXs/2W1klVC5VSQB3OK42XxrcQozvYSKo7k13W1SgDDP Nc74vhjXw1clY1DBRyBRewGJD45uLgZis3YZ6g5xXaaZcSXdhHPIu0uOlc94HtIT4chZo1JLEkkc mtHXdci0JbdNhbzGKgAdKuW9rCTNgY3c8U4kYrntX8RJpiWmIi0lx0x0FT6rrkWj2UM8+SZOo7Co sx3L9/Oba0mmUbtikgepxWV4W1mbWop5pFVQjbRg1Emuwa1ZXaW8TeWqE7iOM4rlfC2tzadYSxW1 o8g8ze7AcDg01ELnp3fjnFHvWTpmt29/pz3bPsWNd0mew71jf8JzBJO4hgkMCHDSbeB9eaVnsFzr +vTmlAxVWwvY761WeMjBq2CD9KVrAmQXVxDZwNPcSBIkGWY9q4q88fCS4aKwszIqnAcjr+VTfES7 ki022t0YqJnJbHqK1fC+h2lhosGYw0si73c8k5qkurBvsUNJ8XteXsVpPA0UkhAGRXXHlelUTo1q byO6EQ81OhArJ1bxVb2OofYIY3nuB94IM4pPXYWp0w+70pBjPp9axtK1y31FGzkSIMlMcisKXx2q 3UsCW7NIrMoAHTBxS5R3O349aPpzXER+O4jaYSFnuc52KvIHvW5oPiFNYtZJsYKDJHejlYXNrknH 50oA7GuFXxvcT3TW9raM/l5LkDtXQaNr0WqRyBiEeMEuDxjHWjlYXNksB/hQWBxXFzeNWmvpUs7V 5IYW2s4A/wAa2odciuNEmv058tCxUetHKwubXbOKQkEcZrmLXxV9o0S61TyWCxEADvVvT9fN5oE+ pGPCoGIHfijlYXN1XHShjkcVwL+PJpYGa1tS+1vnfHAFdTomrpqmmG7Pyqv3yeMetHKwuXNQuhY2 E1yyl/LQttHfAzWZ4c1o61FO+3YsbYwKyda8WWlzZXtrZo0x2spZVyBx60vw5iC6JO4OWkkyaajp diudhQ3SgnFVNT1G30uykurlsInQf3j6CoGXBgYz+dDDviuGh8Z3Mp+0m2ZbQvhXIrd1XxCmn6PD fAF1k44quVhc2wQPoe9KCCAegNcKfHat5ciQOLdjjeV4zXQ6lrsGm6ENScFg2AqjGcmjlC5tZ/D6 1j69qr6VYLcRRF2Ztv0Fc3P4v1SDT/t0lnsjc4jY96vXGtSWfhS3v76382aZ/lUjhaOVhc6DSbl7 2wiuXUqXG7Bq8WXBrmrnXGg8IpqiRDJVcL0wCa5+XxtftAt0lqBbK+xn9SKfLcLnow6daUnK1kLr cCaB/ak7AIB2/iPpXOx+OnllBNuUtmbCuRRyMLnbn7tNpltOt1bRzocq6089KkAowfSuL1fxhcWe rz2MNuCysFX1Jqzo3ihr28FpcxGKZuimq5WFzqwQeQc4oLHOMYFcPr3im7bWW03SUDmPIb3Iq3on iK6nmms7pMXUQOEPcgUuVhc649OtIGG3PtmuO0nxVNLdXUd4FX7Orvj1wM4qDQPF8l4bo3W0GGNn UeoHIo5WFzt8g9aMcZ7etcp4f8Ry31rf394uLe35G3uPQe9ZSeL9SuS91FbD7JGxBbtj/GjlYXO/ LLjA6+lOzwR6da5e88Rf8U4+p2wBYFQfasbSvFOqarqEMaRZi3hHZRxRysLnfbgTSnsaaq5ALdcf rRMxjhZu4BNSAueuegpx54A968/XxlfPcG1htvMdWOQvJxmtPX/E8mlJb28cW+9lUZX0z/Wq5WFz rAcn0oORwevpXG6X4luv7TFnqCBXbGMdKl8Q+KpLPUhpenR+bdcZP17CjlYXOsB96buAbOeM1zmh X2rT3DjUoPLjA3bvQVgyeItZ1nUZl01R5MXb296fIFz0MsOPem7yOPzrjrXxFd3eh3bRj/S4OWB7 AVX/AOEul/4Rp7kMPtLSBVH86ORhdHcBsHnpUnHr16Vytzrs2meFYb66UG6mAKA9sjIrGh8UatZy wz6gqrBMRhe4FPlC56D3x+tAOQD7ZxXG+Lddu7C2spbRwqSAkkc571Vil8RNo1xfTy7MR5QY5IHN HKHMd6WAHUH6U1TlumRXn7+JbhfCqgTZvHlKgdz7122mRSQ6fEJWLSMoL/UilYEy2eTxS54qpd6j aWTBbidEY9iagOu6aMf6VGc+4pDNGndvSq9rdw3qFreQOB1qh4i1saNpUlypHmyHYgI6e9FugjWJ +n50mQMZPXpXAacniTUoFv8AziElO5VIxxmp/Gep3+lmxWKVg5T5gO5quUOY7fcOe2ADRkFcggiu MgGs2Xh+9v7ubMhjBQeg61Ut9WvW8Dz3ZmbzhJjNHKF0dlqwuJNNmW1IDsPlPpVfQI72HTz9vbMx Py4OeKx7HULpfAkt75hMxDEMe2OKrWGo3/8AwhNxdozNdMxw55OO9HKFztgy9NwJ9jSMQDnNedeG pb+91SPzb07FOXDHr7Vo6xrV9e682mWMywwwj539xRysOY7YMGHBzS9BmuP8L6rdT6pPYTyGXyx9 /tXY46VLTQADnvTdwVuSPzqnq0jw6TdSIcMsbEH04rhNKh1fWbC4vvtrjyiQoz1xVJaAekhs4A5J pvnRg7d43HtXCw+Jrn/hErmfJE6OEDdx2qD7Fe2WhJrcl3K05AlKFuNpPSjlC6PQC6qPmOKcZFRR uOM9K4rX7q6l8P2epRO6sMFsdCKxNZ8VyTXVmIJm2RKPM9M0+QOY9QLhWAZgC3TJ60jyxxR75HCr 7muBh1WXxB4ns47d28mJQXIPp3qnr+pT3/iSS1851giwNq/qaOQLnpSSpIMxncPam/aIlBy44ri/ B894Ly5gk83yVU7WYVkafbahrOu3Fst1IsUbksSxxRyhdHpyfNyO4zS802CLy4lTJO1QAT3p/Wou UMHX61zni/TkudOkui7K0QBGDiunC81keJgP+Efuj/sCmtwKng7c3h+B2bOcnmuZNpHf+KrpNRlZ Y1ztDHium8IEf8I1bZ6bTnP1rmb+yuPFGu3T2v7mKD5SVPJq18RJqeD2zeXyRMz2qvhTngVB4wvn vPOgt2Kw2v8ArGU9/Sm+F7ieysr7T4ox9pjzjHc9qy7+11q10eeKeJfKaTfI4PzPR9oWp0UVxLp/ gRCp/evHgHvzUQ8NRpoX2ks5udvmF8/jVaKad/B0bzphRtA9hmupeeJtAaSNwV8rr+FDYzN8IahJ eWLJIxZ42Kkn0rpx0rj/AAHA/wBluZz91pDiuwHWs5fFZDjczPEf/Ir6t/15Tf8AoBop3iMj/hF9 X/68pv8A0A0VrDYmZqUdqKKyK1Ipv9S30Nec+EbKG68SX7zKHZXPBHSvSHTepX14qnZaPa2Esk0K ASSHLH1pw0bbE9VYleGOC1dY1CrgmuE8GYF5qsjnCjOfzr0J0DoVPQjBrLXSINOtbg2qDzJEP501 K179Q6WOEttQklub2ysWWKGVzudwM++K7Pw1pltpOnSRx3AkZjvkeuai0+ytbCRbq2d7kuzEgck9 gKu+EtNv9txJdh0t2yEjY8j0q4v3bE2Ortb+3vS4t5A+w4bFWaoafp1tpkbpApG9tzH3q+OazaKC uE8S4PjDS1z05P513ROO1Zs+i2t1fpeSgl0PFOO92BeYp5QZtuAAMntXK+Nbyxi0llG1p3ICAHJH vW3rOnzanaC2jkMSk5YqeeOlZWn+CrS2uRdXbtcyDoHORSWr3A1tAR10a0EgIYpnnqRSaxZXl8sS 21w0O08+9aQwFUAYCjAx2FOBx360SabuBzX9h6qF41Bs/wC7V3SNMu7KV3ubppS3Y1sDGaaxxyea fMwsKBzz0rnvGrhPDFx24UfXJroBk9elU9S0+LU7UwT/AHOPzBpdQMnwOP8AimoQCM7jWT8QyD9g bGMSZNddpunQ6ZZLbQ5C5z+NQ6po9vq0YjnGQvQmnKXvXQJHB+JdRt7rUNIhgdXMe0vg9Olanj4I +j2Ckcs4H4Vqx+C9LSSJhGMoclsck1panottqhiEw+SI/KKba0sTYrpb29h4afyU8tfJy2O5xXMe Drq0s/Dl5JcsiqrHkkfNgHiu6ms45rL7Kf8AV7dp+lYbeC9NcKrA+WDkqOATQpbhY5nQ4pZPCGsX CKdkhcR+/XirtgthaeApN+0MQ24seS2O9drHY20NkLOKILABjYO/vXPy+CLSaQb5G8rduMYPFLmu wsHgZGPh5HkzlnJUe1dPgk8VHb28VtbRxRIESMbVAqYggipbuykjjPH1lJcWMM8aE+U5b8Ku+HfE Vtc6ekckipLGAuDxgV0U0CTRGOQblPXNcpf+BrW5nMkUpiLH+E4qk9LBY0bjxNZ/2hBZW7CaWU9V PSsHw9HFF4t1aS6GHb7pY9q19H8HWWlXAuNxklHRiasal4attQnM2TE7DDFT1FCaQtTndCkE3jfV DB/qEQ9Dxmq3hWCK48SarJKiuVL7Rj3zXaaToVpo9u8VumDJ99z1NFloltYzzTQrh5c7jTUkhWOJ 8FW8Euo6qzoGdQwBPbmrPgA4XUFzwWbjHvXVWGgW1h55hGDMPmIp2naLa6RBMYAd0i/Mf50uYLHH eCGhTUdUkmKIuSNzHtmofDzPd3viCe33eQ0b7GA/vHFL4b8NPf6lftdrIkO4gAHG7mu/sNLtdNsf s1tEIoyCGx/EKd0kFjjfCLWVj4bu/P2LJucuW6/Sq/hwvJ4R1yTny33BOOvWuivfB1jeTPISyq5B ZUOAa1YtOgttN+xQwqsWMbfX60uZbhY82sL2CDwHfwSSASSNtVcjJrc8Ptj4e3YJwNsn681pHwRp rFzsHOdox0J71r2mj21npTaeq7om6g96bkrBY4fQYI18B6lJhckv82OehqxoxcfD298okOQw46ng 12MWiWUdg1kkW2FzlhUlvpFra2bWsa4ibqKXMmFjjNAS1t/At842rI0bFmzgng8Ve+HTAaFN6+bU kngiJ2dVuXSFv+WYPGc1taLo8OjWhgiOQTmndBY0j271yfj9Jn0KMR8qJAxGPSusJziq97bRXduY ZVDKeoNZoo4SOyivNBgW6v4oY1GSimp/FUUdv4ItIoCWTzBhj3rTXwTp5uPMYkpnOzNbV7o9rf2c drIuIY/urVuSJscLr0MMPgbTFRAuDzjvnrmtbVpraLwRavcJ5mVAVcdSRxXQ3Gg2dzaQWsq5ii6C svxNprTaRaWkKEwRuu8AdQOMUcyYWOdsY28Q2lpBfXiRW8ZyIVHOK2vHKRr4YgSJgUVlUH2FZOr2 UE1vHBpFjKLsMvIyNo75rp9P0JpdBgs9T+dx8zDOacmFjCvmA+GMOOQQq5/GqVzHGvwyiOwBmYEg Dqc9a7t9Is3sY7Noh5CAYQdMg9aH0q0ktFsmhHkqBx9DS50Fjg9Yhkf4f2IQZAbLqO9T/wBlC+0S 3+038UMMSZ2KRx713Eum20lj9jMQ8rGMVhr4JsPNBk3Mmclc8U+e4WNrSYUg0q2jRzIgXhjVzBpI 41ihWNAFRRjH06U7nHArN73KPMpVR/iT+9wUEm457YqW7mjuviLaC0AIRgpKdDzzUGp6VNqPjyWN Q6RPJguPTvXbaT4csdKnM8Uf71ifmPOOO1aXSRNjk9MeDSPGd9LekIjFyrMOxpmh3f8Aa3jyW7gU iPDdu2O9dpqWg2WpuGniBI7jvUmnaRZ6XGVtoQhblm7/AEpKQWPMPGNo+neIJvKLKs4zx39qz9R0 260VYUZ23XEQdsdSOuK9fvNHs7+ZZriNXZemaS70axvZ0knhDFAFXPYUKSCxzTaW1n8O/s8KHzHX zHx19axtJt7SXQBFfX4SNSS0YOOa9JMayR+WQAuMEdsdqxH8IaZNN5rwjOclego50Fjn72C2h+H8 q2pYRvKoDN1ODWn4BiT/AIR4Mqjd5pJOOTW7NpVrLp6WJiAhXooqaxsIdNtFgt02rnJFHMOzLBAO KgviFtJSRkBGJH4VYqOVBIhRvusMH6VmM4TwCsT39+xClwD82M45ql4mt3PjSOaeQpBgYau8sNJt NNV/s8YVnHzH1OaS/wBKtdSTbcRhq05ybHL2Ntoz69amO4e4unO772dtU3dNK8fS3l2MIwJV2HHI wa6/TtA0/TJPMt4VWQdHxzipb/SbXUV23CBh6kc0cwWKkWt2WqO9laSGRthJK9uK5HQNRh8OG/ju 0/eMemPvEA4ruNO0ax00lrWARueC3cinTaTZXMxkkt0Y98ikmkFjkvBttJcf2pdSKVil4VccH6Vy sGmTXHiMaYCwQXJXGO3Un6Yr2G3gitoliijVEXIAHvUEWnWsFy1ykK+c38ZHPPWnz6hZnLeObIta WTKCYYJOg6heMVk3M+hzRxsWluLl9qhM5wewxXo00EVxGUlUMpHINZ8Ph7TIJ/OW1TfnIOOhoUgs cn44RjFpaxwkoo3bQOnHQ12MUPnaMiMu4NDjae3HSrMttDKQXjVsdM9qZdyywWUklvHvmxiNfftQ 5XHY8u0zSTJ4zFhy8cU5Y57KvNetYAJwOPT8K5Twlo9zZ3F3fX6gXE3yr6gZrq6TY4oytR8P2WqX AmuEJYDAwarf8IhpW7PlVvceooBzRdgVbDTrbTrcw28YVSck55rD8aaZJqOjjyzlozkKB1xXSsct gHmj5SoXHX1pX1uBw+neLUsbGCyktJWnjUIAF461H40glvp9LaKJskZfHbNdqLG0D+Z5K7/XFTMi MQWUNgcZFVza3C3QytXgefw1LCi5cwAAfhXmxuNSh8Pto62kmzzN7Nt5PsK9fznsMnioxbwBsmJS e5xRzC5TkbO3lHw9Nu0bCVlYBMc8nNS+HxPYeEHEts7SBzhCOTXW7RjG0HngYpxCY2bVI9KOYdjz OCOW88Q2r6fZPbknMxPA61ZvbP8AsnxJcXlzbSTxS8qFHTjrXoKxxR8Kgx7DFNdI5D8yg+xGafOL lOd8N3q3t1K8Onm2h/vFcMxrp6jQJGNqLgegp+RUSd9ikrFHXMf2JenH/LJv5GvPNC1yaw0a7tba 3kmldjyo4X/69ej6nA13p89uhw0ilQfTIrN8N6D/AGPZyRylWd23ZxVJ+6IxdP8ADcw8IzQTD9/c fPg9u9Vrj+1b/S00RbUhdwVpT02jpXoAXHU59qTaASRwfYUcwWMe50oHw39gweI8D64ri9L8IXAs NQmuIwJWQLCD0yO9enAAjnn600gYIA/ChSfQLHGeB9Dm02S6uJkKs37tNw/hpmpabd6brsuoWlus 4k6hh0rt8jj6YxTSePUU+fqFjnfD76ncTT3F3D5CEYVQveq/hjSbmz1W9mmT5HYkMa6pcDtx1xTu DwCQD1qeYLHNa9qt5p2oW2OLaRguO5Oa6RGLIjH+6Cazr7SI7++guLhiVhIKqOmRWiBtXFGlhj+1 Z2tW73elTW6A7nUCtEGmHIbININDL8P2EunaPFayNlgCDxWFcaVq2mXlzLpuGWfk5GMGuy6A96VW 4pptDscv4Y0K6sZLi8vXzcTdQPStPxFYyX+lSW8GA7cjIrWwOoGT70BsfWi7vcLaWMSz0gnw+thc ddm38awG0TWzH9gSdVt93XHau5Jxz1oyGGcYoUmFippWnx6fYR20YyEH3vU96u7TQrdqdS63AyvE Y/4pfVv+vKb/ANANFO8Sf8ivq/8A15Tf+gGitYbETNMc0Uh+hpRzWRYUzdzin1F/HQSSFgKZkNwe lBOaTtQAxoYmbLRqfwqQEBdu3gdBSDpRQtrAKcYpAfSlI4pVAFMBrFvalHIpWwRSLRcAzt6E0rNl eaa3HNA7k9KQCE8UuePpS8EUhx2pgIpzzSnkUgBpaQArE8UHgU1eCac3IoAXsDSA5zSjpSKQc0AJ ml5HNG00rdKADPFKDmkWkNADgc9DSE4pFAFB60Ac/deKreDW101UJkLBTx610IcvgsMcV5lq80Nl 4/FzcHEaFXYk9ABXX6V4nsdVneKEng7RkYqraXQrm8cnijGBzWBf+LNOsLmS3kY+YnUAdfpVnTde s9SfZE2XxnB4NKzHc1s0Zpo+bpTgMCpsAoIJArlL7xvZ2l49tGjOyNtb5eldQQCCDkA+lZZ0fTbR J5mgXHLuzcn8aaAbo3iC21jIjKhgCSPStDUb2DTrKSe6bZGnBz3z0FcP4Hha48SX95CmbdCUA6Ak 9Kk8UXMuuX01haOPstlEZZ5AeGIHT6iqa1SQrnUaNq1rqqv9lUbVPO0VUv8Axfp1netaLIHdPvYG cHuPqKwfBkps/DOpXAHzqGK5PXAo8E6LFd2NxqF0fNaViiBucc8sfftTsrhc7Kw1GDUrcSwuGX27 Vi3vjOwt7o28LiVlJBKgkcd65+xun0q8123RyFSNmTHY4PSr/gfRraTRprqWPdLcORlucLS5VuFz pdN1aDU4vMhcEj72O1aHUcGuE8KZg8T6haBv3akkCu6VRSaBPuLlh1xS5NQ3dxHawSSzMFSNSzE+ grHXxVpspREkyznAApWHc3c4OKO1YV74o02yupIZZB5keAQAeSas6frtlqRKwNlh2FHKFzSwT0p2 w4571jXPifTrO5lt5JwHiOGBFMt/FulTwPP5yhF7mlysLm4qrmlIwaztL1u01YE27hq0jzRZhcTN I6blx19qDUF7MbaxmmHJRCR9cUAZd94j03T7p4C6tLGPn2DO0+hIrQ07VbfUY98DgnHOK5bwPYxX em3t3cKJGmlbkjk/WotGR9P8a3Vkh/d4Jx2q+XoK53RI4yeD19q5fU/GlpaXzW1urSsnDFRkCtbx BMbbQb+VCQ4ibaR24Nc34D0uB9DlupIw8k8hJZhk1KVwudJpWrW+p2zSoy/L97npWTJ4202OZ0Lk hDjge+KyNCm/s/xBq9qvMaqX/Sszwxc6VALg6iMzyyADeOOhB/XFXyILnaaX4mttXvPs8PJxu6EY FWtU1+z0hcXEwV8Z2d/pUFvHpllYT6laoMCMvuHXGOled6c0Gr6vPfaxcnYJC23rluwHtU8oXO20 bxHa6trDRQ22GOW3leeldTtzxWRoi6UqZsFXcR97POPStcMDSegypqN/Fp1uJZNxGcYAyTWMvjLS 2OBKCScAYPJrY1Exw6dNPL8yxoXxjNeaeC0gfWJbq9KiOJMgN0yW600kxN2O1TxbYSXEcIyGcgAY 61v4JHXjA/WuRiWw1zxTELYDybMbmYDG5uoxXSX98mnadPdyHiNNwHqewoaSDU5rUfEtwnidNMtk UpuCZzyTXYBiAC3BYCvP/BFm99qN1rFyu4qSVJ/vk8ke2K9BGW7ZOO9Eg1GnPHr2rA1HxLDa6xDp 8eJJWZQxzwuf60/xFrbaeqWdr81/csFjXqFHTJrhLS0MHjaCCSfzXWRCz5zuPf8AKiMLoGz1ZTlV P8R5pWpB0/KmyuqIzN0UEmpsMeeDg+lMJx14rlZPHVlHvXYxIPy5HWpNU8WJYpAEt2eWdA4AHY0+ ULnSlsDJ6Ux7iKJsSyKp9CeTWDoXiOPV5TGyGOQc4btXIavrRHi4yuJEjjcZGeuD6VSiwud7r2tj RbNZipdnbbgDoPWrOl3y6hp6XarhWrm9W8QW8+hRXktszqzlFDemKtReIoLHwxb3hiCB8rHEo6mi 2grnT54zSnHTIziuHs/G0ryRvcW+yCRgFYdq7SJ1ljWVcEMuQamw7i80halzk4qOZxDE0jDKqCSP pQBJmhSepHXiuBTxpe3V9IIbdTGmSPXAroL/AMRxaboMd9LH+8l4WM9c/wCFVyhc3sjdzwacTx0r hrPxhc/aohdweTHKfkPrWxr2u3Gnx24tLUzyTLux/dFHKFzf204cVyXh7xPNqWovZ3EQSQZ/SusA J7ik01uMw/FGpT6VpQnt9u8uASaf4bvJtQ0eO5m+83NZ/jzjw/k/89BTNL1VNF8DW93J97ZhV9TT S0uK+p1fOMjBo6dcVwi+KtSiEN7c26x2sz4XnnrWjqHiSe01a1gaJRDOoIb60coXOq3Drmjktnse 9cvba/PeeLTp0AXyIxlnH55qne+Jb2+1iax0pV2Q53yHjmjlYXOykcpEzqRlQTXIeFtYvdR1i6jn kykZPH8qt6Brb6lDc282POiU7sVkeB8HWdRPocfrVLzFc9AHSmjqeadkY+tNAAbPNZjA0c4pxwab QO48Ekc0Z98/WkU54pcUBoLzR60UUDAHikzSdDTiQKFoLUbRQOaDx3oAcBxTf4gBShh70n8WaBDm oP3aGpCcjFADl6Uh5NCnAozzQMXFBx2oJ4puaBjweKQUgOKM88UCBu1B4FIx5oJ+WgY5KkHNRRsD Uo4FAGZ4k/5FfV/+vKb/ANANFHiT/kV9X/68pv8A0A0VpT2ImaeT7UdelLikPtWZQHgVFjJJqWkI 9KBEWaUHg07bS7cCgYwHijOcCnYpdtAhD0oHAoooATNCjAJp3FIfagBpOcUhPHFOoxQAgPFB6U4A Cl4oAYDSE4p+2kIFO4DB1p1OxkUmKQCdsUigg8inYox70AGabgsacBRgg0AAGKT1p1JigAAxTWIz 0NPoHHPcUAeZatbxXvxCSGbBRmUsPpzUtjbra/EhreIkRjnaOnSumPhhZPEQ1ZpPmDBgPoKki8OJ H4hk1cyEyOeF9qtNKyJaucrNaxS/Ejy5kDLgNgnuKmufKtPiBBBafKG27gp4HNU9TW6l8fulm2yR gAG9K6fRPC5sL99RvJzPcuMAkdKE7K4WOjV1G1MgP1K96kxkVyYa7j8biFJWkV03SD+6BXWKeajo UNGCMnpXDeJdZk1jUY9B0+UBWP8ApEnQAfX0rtbyA3NpLCrFd6lSc4xkVySeAYVfcLqRSTksG5NE XrqBt2NnaadpX2DTnXzAuAQRlmPUn+lcfc+F9U0/Srwm6xEwZ5cdW79a6TS/Co0y9S4+0u5UHgkn 6Vsapam+02e3BwZUK9PUYqnLW4WPNfDNnqNxpF6Y5CLZAwK924rq/A88S6MIGYK0bsWB7Vf8OaI2 kWU0Dsr7zkAisu68JXaTTGwu2hSbO4fWndXJsYQQ6nquvvCNyBGGR64NdH4JuU/sBELqGjYgg9qv aB4eh0exkgGZHlOZHbuayLnwldxyTLYXjRRSk7h9etF01YLa3KfhQm58X6nOnMYJGa70dKyvD/h6 20CyaOJmeSQ5dz3NapHFS30KsZXiRc+H73I/5Ztz+Brk/AuiW13E+ozjdKjjyx6YNdtqlm1/ps9s rlTIpXPpkYqj4e0b+xbAwNIXOckmhNE2OTntIZ/iT5Eq703byOxI6VPJCll8QLWG0wEdcuE6Cs7U hdyfEKVLIgStLtDHoBjk10/h/wAKyafqUupXk5muWBx2Aq1pG4WOaOnRaj8RZbacEx7ixwetR6do 1tP44ns2U+RFkiMdCRzXX2vhww+JZdVEx3OTxT9P8NtZ+I7jVPNJaQkgfhSUkFjn/CsItvGOo20e fKjHygdBXeCRfNMe8bx1XPNYOleHpNP1q6v/ADCxmySKzbdZrfxz5Mc7yq67pM9F9qnca0O02lul VNUUyaXcIByykD8quDikZQwIPSpQzkvAkirostuxw6ytkd6p6eftnxGu5IW3JGDkj6VZuvC2oQXU kum3ZiWU5IA6ZrT0Hw2ui2dxiRpLmbgyHrj/ABzWl1uTYta2q3eiXsaEMzIwAHrisbwPcquheQ5C tHIdwPbFamjaNPYfaTcXDSiViQD2rJvfCE0lxI1pdvAkh+ZV7561KtawWM/wygv/ABXqcuN0WSjH 1ro7/RNL+zM7xxxqoJLECnWGjR6Bo88djlp5FJ3N1L44/WuZm0bxHqxaG4uRHEx7A07hYi0OSa78 MavCmTHHuRT6dcVL4L0/TrnRZEmjT7QzkNurrdJ0O20nSBYopcEfOx/iPvXPXngu4853sLt4A5yQ DxT5lcLGR4bJg8ayW1tIWtvm4B447j2r0dVHv1rC8O+F7fQmeUOXncbSx7D2roRxUyZSOc8a3X2b wvcgNtMhEa+/rWN4J0S3m0SS7uIizzSELnstbfiTQJtekiXzvLhjGAg71Y0LSrjSovIeUNEo+VaE 0kK1yPRNEj0YXLx8vK2ePSsDx9dPI1rpUJPmTPudR3/u/rXdElfm4wOa4XSrG71TxjLqF/EVWE/I T0+XhcfhSTu9Rs6nR9NXTNJtrRcAqoZ/qah1zWk0awaViPOOfLj6lj249K18kf1NcvfeFHv9S+2T 3ZYhsoD/AA0J3d2BBpPhhrhF1DUpXa7l+dSp+6D2rm4YY7T4hRxRHKrL1znNelSW0v2DyIpism3A k71zcXgmOK6+1famMwcsCfeqUu5NjqsfIDkGo5+IHOM/KePwp6R7IkTOdq4J9TSSJvjKeoxU3KPN /CWnwXmvXZuELCIHYDz1Naur6oo16LTbO0jMwURmRgPlrc0fw9DpNxPOjlpJevoOap6v4Tj1DUvt kUxhck5IOCeKvmRNjmfCAP8AwltwruHbaw46Zp2rQwP4+giZF8sFWIP1rptF8JW+kXpuhK0jgEKD 79SamvvDUF9qkd6TtdSOnenzdQsZXjxI4dCgCIqgS4UAcdKwNVjlbwdpDJkomc8dM16Bqujwarbr BP8AdU5WozoVqdJXTyCYlXA+tTzjszjNfmsovDenQW4RpQFYgeoFdhplyllo1mt1KFldMhSeorOt fBNjDcrNJufachSeKg8YWe99P+zqxuCyhVX+Fc020wSsdaOeQRyMimzKjQt5pwu07vpTrdGjto0c fMqDP1pZYxLGVbowwahlWPMb+GHTDJe6fcLjdgoeSeeaf4nknvtH0e5IwrcEY4zXUSeCdOlmLkso OSQD1rUuNFtbmxSzKARRjCLV80SeVnF3Gn2Ugtp7vUVYqFVYl/pWnr2tSQXtvptmI1Yxrulf+EVo 2ngvTra4SYguUOVBOQDVrUfDNlqUyyy5DLxkdSPSjmiHKziPCJL+MJGd95+ba3rkV6cqisbTfC1j pd0bmBT5nQZ7VtZxxUykUkcp49GdAC4PMg6VgajbSz+A9OZQfkGT7c16DeWUGoKsdwu5FOcUgsrd bNbQRjygMAVSl7onG5wKDQ5tOg+03TyyquBEPX6Vd8bWWdGs7u3yGiAC10SeGdMjn84W43A561oz 2cF1AsUqZQfw9qXOg5TjfAVg32O6v3BMkxKAnrtx/PNYtvFDp2u3v9pSyRRsxK4zg16hbWsNpAsM SBUHOBVS80eyvjmaIMfcU+fUOU53w22nPLevp8MgVY8M5H3jVXwLC66lqRZCMsQM/WuztbG3s4jF DEEUjBxUkFrDbZ8mNVLHLEd6XMHKPx0p2KdxSVJVho60uQOtG1fekZAaAsAIzkUuaRUwM0oFAWFo HWlxSUBYUjvTDzT80YoAaBRtGadijFACbaWloyKAsIRk0uKXFJQFhMUoFKVOKTOOKAF4pMUUDmgA xRilxSUAIcE0YFOo2mgBqrg5p+4UgFBGKVwM3xGf+KX1b/rym/8AQDRTfEf/ACLGrf8AXlN/6AaK 1p7ETNXmloo7VmXYTcKMikwaSgLD+KQ9KC3FMzQK47PSlzmmg5o6UCFxSU4EMDim0DDtRQfag9KB 2AkCgc96a3PFKqigQp470daRgASabk7gKAH80UUmRQIUelLim5p+cigBtGMig0A4oABx1pCcmhiD yaTtmgB+KSkJ4oDcUAGaU9KQjccmnEcUAAxjqaPp1pAaKAKKaRZxai195W6dhjce1X/rk0h9aAc0 dLARxWsUczzhF81/vP3+lS8ZozwaBQAbaXFKOe9GaQDSOfagdf5U7tTcUgEPJ5yaBgdKD7U0cnJ7 UAOwSc5pFUZ5/SlJoBoAXac+1GKXcKTcCKdgDIoGD1GRSA5NBODSsBnx6JZx6k2oeUDcH+L0rRwN vT9aNwIpCD2NPW1gFPQUdRgnikPSl9KQBtHfpVeK0giuHuFiUTScO/erR6UyncAopcU3IzQA4Ngc CgEnJzSZpCw7UAOJyOppBkd6TNAYGgA2jB96McdTxRkCjNMBxJxzTcjsMUFh0pO9SA7APJoopM0A GeeBj8aU845z9aaOtOJxQAdqaFUcBQKXcMUlFgA8UZBFIxFNJ9KAH5yOKOvWkHSlp2GFJilpCR60 gEHWlOM03cBQT3p2EO4pAwzQDTCfm4oAeeaaOtJmgNmiw7ilzuHHGaQqm7zMDeOhxnik6mnHpTEJ uLHrkHrmn5BAFNUDFISFPegdx9KBg5pm4YzRupWGSUUzJNGTRYB2aCBmmlhRk0WAdjIOKaB60KTT sUwEpRjFNc9AOtKTgUgHHpTfwpNxAzSeZ7UWFceRgZpe2ajDZz6Uqk80wH0maaCScUtKwxw5pcUg PBpASaYrikelKtMLdqBnFAXJCOKbTck08dKAE706kxS0DCiimNnPFAD6bTd3NOoAUHNKOtIKXpQA /NNIFNIJGTTQTmgVx/alWkPQ0A8UDHdqQDmmgk0vNArj+KOPWo80FeKVhkmQBnNNLA1Hj3p6ijQD M8R/8ixq3/XlN/6AaKXxGP8Ail9W/wCvKb/0A0VrT2ImatFFFZlhTG4NFFAAOtNfg0UUEirS0UVQ DFPzU+iipGFFFFAxrUik0UUEiMaX+L8KKKAELHBoT5hk0UVQDh1pzcAUUVIDCeaATmiigBX6Uv8A DRRQAHpSqOKKKAGMSGH1p2aKKAEpMmiigAJ4py0UUAL2oHQ0UUAIo5NCn5qKKAJKD0ooqQGU08E0 UUAB6UDgHFFFACA8ilPBooqgFTqaU9aKKAGtx0pyHIoooAKB1ooqQHnpTKKKAEJ4qJiaKKoB7n92 KF+7RRQAvamr3oooAQn5hTz0NFFSAi80veiigB3am0UUAFNaiigA2jAp1FFUA09aUjg0UVIAOlOH SiiqASmlRmiipAa1B+6KKKoAXpTR/rB9aKKAHOMGgDiiigBo6mnH7ooooAB90/Sm9TRRQAj8YpT0 FFFAD1pG+8B70UUAKyjNJ2oooGKtPoooGJikaiigBp6CkwKKKBDsfKaFoooGIPvGnUUUAKnWkPDU UUEjT1pw6GiigYo6U5aKKBi0UUUAFNPWiigAxR3oooJFHWlPSiigBR0FIoG6iigYknFA6CiigYm4 7sU7tRRQIbTz0FFFAxnc09aKKkDO8Sf8ivq//XlN/wCgGiiit4bETP/Z ------=_NextPart_000_000B_01CA8F6E.FDAEDB30--